精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex+2x2-3x
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)当x≥1时,若关于x的不等式f(x)≥ax恒成立,求实数a的取值范围;
(3)求证函数f(x)在区间[0,1)上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,
e
≈1.6,e0.3≈1.3).
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的极值,利用导数求闭区间上函数的最值
专题:综合题,导数的概念及应用
分析:(1)求导数,可得切线斜率,求出切点的坐标,即可得出切线方程;
(2)分离参数,构造函数求最值,即可求实数a的取值范围;
(3)证明f'(0)•f'(1)<0,f'(x)在[0,1]上单调递增,可得f'(x)在[0,1]上存在唯一零点,f(x)在[0,1]上存在唯一的极值点,再利用二分法求出x的近似值.
解答: 解:(1)∵f(x)=ex+2x2-3x,
∴f′(x)=ex+4x-3,
∴f′(1)=e+1,
∵f(1)=e-1,
∴曲线y=f(x)在点(1,f(1))处的切线方程为y-e+1=(e+1)(x-1),即(e+1)x-y-2=0;
(2)x≥1时,不等式f(x)≥ax,可得a≤
ex+2x2-3x
x

令g(x)=
ex+2x2-3x
x
,∴g′(x)=
(x-1)ex+2x2
x2

∵x≥1,∴g′(x)>0,
∴g(x)在[1,+∞)上是增函数,
∴g(x)min=g(1)=e-1,
∴a≤e-1;
(3)∵f'(0)=e0-3=-2<0,f'(1)=e+1>0,
∴f'(0)•f'(1)<0
令h(x)=f'(x)=ex+4x-3,
则h'(x)=ex+4>0,f'(x)在[0,1]上单调递增,
∴f'(x)在[0,1]上存在唯一零点,f(x)在[0,1]上存在唯一的极值点.
取区间[0,1]作为起始区间,用二分法逐次计算如下

由上表可知区间[0.3,0.6]的长度为0.3,所以该区间的中点x2=0.45,到区间端点的距离小于0.2,因此可作为误差不超过0.2一个极值点的相应x的值
∴函数y=f(x)取得极值时,相应x≈0.45.
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的最值与零点,正确分离参数求最值是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)在R上可导,f(x)=x2+2f′(2)x+3,则
3
0
f(x)dx(  )
A、16B、-18
C、-24D、54

查看答案和解析>>

科目:高中数学 来源: 题型:

以下关于算法的说法正确的是(  )
A、描述算法可以有不同的方式,可用形式语言也可用其它语言
B、算法可以看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列只能解决当前问题
C、算法过程要一步一步执行,每一步执行的操作必须确切,不能含混不清,而且经过有限步或无限步后能得出结果
D、算法要求按部就班地做,每一步可以有不同的结果

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中三条边a,b,c成等比数列,且b=
3
,B=
π
3
,则△ABC的面积为(  )
A、
3
2
B、
3
4
C、
3
4
D、
3
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两直线l1:3x-4y+7=0和l2:x=-1,点P在抛物线y2=4x上运动,则点P到直线l,和l2的距离之和的最小值是(  )
A、2
B、
11
5
C、
12
5
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:
API [0,50] (50,100] (100,150] (150,200] (200,250] (250,300] >300
空气质量 轻微污染 轻度污染 中度污染 中度重污染 重度污染
天数 4 13 18 30 9 11 15
记某企业每天由空气污染造成的经济损失S(单位:元),空气质量指数API为ω.在区间[0,100]对企业没有造成经济损失;在区间(100,300]对企业造成经济损失成直线模型(当API为150时造成的 经济损失为500元,当API为200时,造成的经济损失为700元);当API大于300时造成的 经济损失为2000元;
(1)试写出是S(ω)的表达式:
(2)试估计在本年内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;
(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面2×2列联表,并判断能否有95%的把握认为该市本年空气重度污染与供暖有关?
附:
P(K2≥k0 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
K2=
m(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

非重度污染 重度污染 合计
供暖季
非供暖季
合计 100

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A、B、C的对边分别为a、b、c.向量
m
=(cosA,cosB)与向量
n
=(a,2c-b)共线.
(Ⅰ)求角A的大小;
(Ⅱ)设等比数列{an}中,a1cosA=1,a4=16,记bn=log2an•log2an+1,求{
1
bn
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对应的边分别为a、b、c,且a2-(b-c)2=(2-
3
)bc,sinAsinB=cos2
C
2

(1)求角A和角B的大小;
(2)若f(x)=sin(2x+C),将函数y=f(x)的图象向右平移
π
12
个单位后,得到函数y=g(x)的图象,求函数g(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知i是虚数单位,a∈R,若复数
a+i
1-i
的实部是-1,则a=
 

查看答案和解析>>

同步练习册答案