精英家教网 > 高中数学 > 题目详情
5.如图,在正三棱柱ABC-A1B1C1(底面为正三角形且侧棱垂直于底面的三棱柱)中,底面边长AB=3,侧棱AA1=4,AC1与A1C相交于点E,点D是BC的中点.
(Ⅰ)求证:AD⊥C1D;
(Ⅱ)求证:AB∥平面ADC1
(Ⅲ)求三棱锥C-ABB1的体积.

分析 (Ⅰ)证明AD⊥平面BCC1B1,即可证明AD⊥C1D;
(Ⅱ)连接DE,则DE为△A1BC的中位线,得到DE∥A1B,从而得到AB∥平面ADC1
(Ⅲ)利用三棱锥C-ABB1的体积=三棱锥A-CBB1的体积,代入体积公式进行运算.

解答 (Ⅰ)证明:∵正三棱柱ABC-A1B1C1
∴C1C⊥平面ABC,
∵AD?平面ABC,
∴C1C⊥AD,
∵点D是BC的中点,△ABC为正三角形,
∴AD⊥BC,
∵BC∩C1C=C,
∴AD⊥平面BCC1B1
∵DC1?平面BCC1B1
∴AD⊥C1D;
(Ⅱ)证明:连接DE,
∵四边形A1ACC1为矩形,
∴E为A1C的中点,
∵D为BD的中点,
∴ED∥A1B,
∵A1B?平面ADC1,ED?平面ADC1
∴AB∥平面ADC1
(Ⅲ)解:由(Ⅰ)知AD⊥平面BCC1B1
∵AD=$\frac{3\sqrt{3}}{2}$,${S}_{△B{B}_{1}C}$=$\frac{1}{2}×3×4$=6,
∴三棱锥C-ABB1的体积=三棱锥A-CBB1的体积=$\frac{1}{3}×6×\frac{3\sqrt{3}}{2}$=3$\sqrt{3}$.

点评 本题考查证明线线垂直、线面平行的方法,求三棱锥的体积,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知点F为抛物线E:x2=4y的焦点,直线l为准线,C为抛物线上的一点(C在第一象限),以点C为圆心,|CF|为半径的圆与y轴交于D,F两点,且△CDF为正三角形.
(Ⅰ)求圆C的方程;
(Ⅱ)设P为l上任意一点,过P作抛物线x2=4y的切线,切点为A,B,判断直线AB与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知命题p:函数f(x)=log2(x2-2ax+16)存在最小值;命题q:关于x的方程2x2-(2a-2)x+3a-7=0有实数根.若命题p∧q为真命题,则实数a的取值范围是(-4,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是七位评委为甲、乙两名比赛歌手打出的分数的茎叶图(其中m为数字0-9中的一个),甲、乙两名选手得分的平均数分别为a1,a2,若a1=a2,则m=(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}满足:a3=-9,a12=9,设{an}的前n项和为Sn,则使得Sn最小的序号n的值为(  )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某产品的广告费用x与销售额y的统计数据如表:
广告费用x(万元)1245
销售额y(万元)6142832
根据上表中的数据可以求得线性回归方程$\widehaty$=$\widehatb$x+$\widehata$中的$\widehatb$为6.6,据此模型预报广告费用为10万元时销售额为(  )
A.66.2万元B.66.4万元C.66.8万元D.67.6万元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(sin(x+φ),2),$\overrightarrow{b}$=(1,cos(x+φ)),函数f(x)=($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$),则f(x)的最小正周期是(  )
A.1B.2C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合A={x∈N|-1<x<5},B={y|y=4-x,x∈A},则(  )
A.A∪B={1,2,3}B.A=BC.A∩B={1,2,3}D.B⊆A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在一段时间内,某种商品的价格x(元)和需求量y(件)之间的一组数据为:
价格x1416182022
需求量y1210753
求出y对x的回归直线方程,并说明拟合效果的好坏.

查看答案和解析>>

同步练习册答案