精英家教网 > 高中数学 > 题目详情
16.已知f(x)=sin(2x+$\frac{π}{6}$)+$\frac{3}{2}$,x∈R.
(1)求函数f(x)的单调减区间;
(2)若x∈[0,$\frac{π}{4}$],求函数f(x)的值域.

分析 (1)将内层函数看作整体,放到正弦函数的减区间上,解不等式得函数的单调递减区间.
(2)x∈[0,$\frac{π}{4}$]时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的取值最大和最小值,即得到f(x)的值域.

解答 解:(1)f(x)=sin(2x+$\frac{π}{6}$)+$\frac{3}{2}$,x∈R.
∵2x+$\frac{π}{6}$∈[$2kπ+\frac{π}{2}$,$2kπ+\frac{3π}{2}$]是单调递减区间.
即$2kπ+\frac{π}{2}$≤2x+$\frac{π}{6}$≤$2kπ+\frac{3π}{2}$
解得:$kπ+\frac{π}{6}$≤x≤$kπ+\frac{2π}{3}$,
∴函数f(x)的单调减区间为[$kπ+\frac{π}{6}$,$kπ+\frac{2π}{3}$],k∈Z.
(2)∵x∈[0,$\frac{π}{4}$]时,
∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{2π}{3}$]
结合三角函数的图象和性质,可知:
当2x+$\frac{π}{6}$=$\frac{π}{6}$时,函数f(x)取得最小值为2,
当2x+$\frac{π}{6}$=$\frac{π}{2}$时,函数f(x)取得最大值为$\frac{5}{2}$,
故得x∈[0,$\frac{π}{4}$]上函数f(x)的值域为[2,$\frac{5}{2}$].

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设函数$f(x)=\frac{1}{2}+{log_2}\frac{x}{1-x}$,${S_n}=\sum_{i=1}^{n-1}{f(\frac{i}{n})}$,其中n∈N*,且n≥2,则S2014=$\frac{2013}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,D为线段BC上一点(不能与端点重合),∠ACB=$\frac{π}{3},AB=\sqrt{7}$,AC=3,BD=1,则AD=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设$\overrightarrow a$=(2,1),$\overrightarrow b$=(1,3),求$\overrightarrow a•\overrightarrow b$,$|{\overrightarrow a}|$及$\overrightarrow a$与$\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.对任意的实数k,直线y=kx+$\sqrt{3}$与圆x2+y2=4的位置关系一定是(  )
A.相离B.相交但直线过圆心
C.相切D.相交但直线不过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知|x-2|+|x+1|>a恒成立,则实数a的取值范围是(-∞,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列各组函数中表示同一函数的是(  )
A.f(x)=x与g(x)=($\sqrt{x}$)2B.f(x)=x|x|与g(x)=$\left\{\begin{array}{l}{{x}^{2}(x>0)}\\{-{x}^{2}(x<0)}\end{array}\right.$
C.f(x)=|x|与g(x)=$\root{3}{{x}^{3}}$D.f(x)=$\frac{{x}^{2}-1}{x-1}$与g(t)=t+1(t≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,过椭圆E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一点P向x轴作垂线,垂足为左焦点F,A,B分别为E的右顶点,上顶点,且AB∥OP,|AF|=$\sqrt{2}$+1.
(1)求椭圆E的方程;
(2)C,D为E上的两点,若四边形ACBD(A,C,B,D逆时针排列)的对角线CD所在直线的斜率为k,求四边形ACBD面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是(  )
A.对立事件B.不可能事件
C.互斥但不对立事件D.以上均不对

查看答案和解析>>

同步练习册答案