精英家教网 > 高中数学 > 题目详情
18.在△ABC中,D为线段BC上一点(不能与端点重合),∠ACB=$\frac{π}{3},AB=\sqrt{7}$,AC=3,BD=1,则AD=$\sqrt{7}$.

分析 由已知利用余弦定理可求BC的值,进而可求DC的值,再次利用余弦定理即可求得AD的值.

解答 解:在△ABC中,∵∠ACB=$\frac{π}{3},AB=\sqrt{7}$,AC=3,
∴由余弦定理AB2=AC2+BC2-2AC•BC•sin∠ACB,可得:7=9+BC2-2×3×BC×$\frac{1}{2}$,整理可得:BC2-3BC+2=0,
∴解得:BC=2或1,
∵D为线段BC上一点(不能与端点重合),可知,BC≠1,
∴BC=2,CD=BC-BD=2-1=1,
∴由余弦定理可得:AD=$\sqrt{A{C}^{2}+C{D}^{2}-2AC•CD•cos∠ACB}$=$\sqrt{9+1-2×3×1×\frac{1}{2}}$=$\sqrt{7}$.
故答案为:$\sqrt{7}$.

点评 本题主要考查了余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若2x-3<m的充分不必要条件是x(x-3)<0,则实数m的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=a•lnx+b•x2的图象在点(1,f(1))处的切线方程为x-y-1=0.
(1)求f(x)的表达式;
(2)若F(x)满足F(x)<G(x)恒成立,则称F(x)是G(x)的一个“游离承托函数”.
证明:函数g(x)=2af(x+t),t∈R且t≤2,是函数h(x)=ex+f(x+t)的一个“游离承托函数”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知θ∈(0,π),tanθ=-$\frac{5}{12}$,则cosθ=(  )
A.$\frac{12}{13}$B.$-\frac{12}{13}$C.$-\frac{5}{13}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合M={x|1<x<5},N={0,2,3,5},则M∩N=(  )
A.{x|2<x<4}B.{0,2,3}C.{2,3}D.{x|2<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知定义域为R的函数$f(x)=\frac{{b-{2^x}}}{{{2^{x+1}}+a}}$是奇函数.
(Ⅰ)求a、b的值;
(Ⅱ)解关于t的不等式f(t2-2t)+f(2t2-1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax2-2x+1在区间(-1,1)上只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=sin(2x+$\frac{π}{6}$)+$\frac{3}{2}$,x∈R.
(1)求函数f(x)的单调减区间;
(2)若x∈[0,$\frac{π}{4}$],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设公比为q(q≠1)的等比数列{an}的前n项和为Sn,且Sn=qn+k,那么k等于(  )
A.2B.1C.0D.-1

查看答案和解析>>

同步练习册答案