精英家教网 > 高中数学 > 题目详情
8.若2x-3<m的充分不必要条件是x(x-3)<0,则实数m的取值范围是[3,+∞).

分析 分别求出不等式的解集,结合充分不必要条件,可得A?B,解出即可.

解答 解:由x(x-3)<0,解得:0<x<3,即解集A=(0,3)
由2x-3<m的,解得,x<$\frac{m+3}{2}$,即解集B=(-∞,$\frac{m+3}{2}$),
若2x-3<m的充分不必要条件是x(x-3)<0,
∴A?B,
∴$\frac{m+3}{2}$≥3,
解的m≥3,
则实数a的取值范围是[3,+∞),
故答案为:[3,+∞).

点评 本题考查了一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.某高三年级有500名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图),若在身高[160,170),[170,180),[180,190]三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在[160,170)内的学生中选取的人数应为15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列函数中,既是偶函数又在(-∞,0)上单调递增的函数是(  )
A.y=x2B.y=exC.y=log0.5|x|D.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n 14  15  16  17  18  1920
频数1020  16  16  15  13 10
以100天记录的各需求量的频数作为各需求量发生的概率.
(1)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;
(2)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.有下列四个命题:
①“若xy=1,则x,y互为倒数”的逆命题;
②“相似三角形的周长相等”的否命题;
③“若b≤-1,则方程x2-2bx+b2+b=0有实根”的逆否命题;
④“若A∪B=B,则A?B”的逆否命题.
其中真命题是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=$\frac{2^x}{{1+{2^x}}}-\frac{1}{2}$,[x]表示不超过x的最大整数,则函数y=[f(x)]的值域为(  )
A.{0}B.{-1,0}C.{-1,0,1}D.{-2,0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1是矩形,∠BAC=90°,AA1⊥BC,AA1=AC=2AB=4,且BC1⊥A1C
(1)求证:平面ABC1⊥平面A1ACC1
(2)设D是A1C1的中点,判断并证明在线段BB1上是否存在点E,使DE∥平面ABC1,若存在,求点E到平面ABC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设函数$f(x)=\frac{1}{2}+{log_2}\frac{x}{1-x}$,${S_n}=\sum_{i=1}^{n-1}{f(\frac{i}{n})}$,其中n∈N*,且n≥2,则S2014=$\frac{2013}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,D为线段BC上一点(不能与端点重合),∠ACB=$\frac{π}{3},AB=\sqrt{7}$,AC=3,BD=1,则AD=$\sqrt{7}$.

查看答案和解析>>

同步练习册答案