精英家教网 > 高中数学 > 题目详情
3.已知定义域为R的函数$f(x)=\frac{{b-{2^x}}}{{{2^{x+1}}+a}}$是奇函数.
(Ⅰ)求a、b的值;
(Ⅱ)解关于t的不等式f(t2-2t)+f(2t2-1)<0.

分析 (Ⅰ)利用f(0)=0,f(-1)=-f(1),即可求a、b的值;
(Ⅱ)利用(x)在(-∞,+∞)上为减函数,f(x)是奇函数,即可解关于t的不等式f(t2-2t)+f(2t2-1)<0.

解答 解:(Ⅰ)因为f(x)是奇函数,所以f(0)=0,解得b=1,
所以$f(x)=\frac{{1-{2^x}}}{{{2^{x+1}}+a}}$.
又由f(1)=-f(-1),解得a=2,
(Ⅱ)由(Ⅰ)知f(x)在(-∞,+∞)上为减函数,
又因f(x)是奇函数,从而不等式f(t2-2t)+f(2t2-1)<0等价于f(t2-2t)<-f(2t21)=f(-2t2+1).
因f(x)是减函数,由上式推得t2-2t>-2t2+1,
即3t2-2t-1>0解不等式可得t>1或$t<-\frac{1}{3}$,
故不等式的解集为:$\left\{{t\left|{t>1或t<-\frac{1}{3}}\right.}\right\}$.

点评 本题考查函数的奇偶性、单调性,考查学生解不等式的能力,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设函数f(x)=$\frac{2^x}{{1+{2^x}}}-\frac{1}{2}$,[x]表示不超过x的最大整数,则函数y=[f(x)]的值域为(  )
A.{0}B.{-1,0}C.{-1,0,1}D.{-2,0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{{\begin{array}{l}{sin\frac{5πx}{2},x≤0}\\{\frac{1}{6}-{{log}_3}x,x>0}\end{array}}$,则$f[{f({3\sqrt{3}})}]$=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在△ABC中,∠ABC=90°,$AB=\sqrt{3}$,BC=1,P为△ABC内一点,∠BPC=90°,∠APB=120°,则tan∠PBA=$\frac{\sqrt{3}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,D为线段BC上一点(不能与端点重合),∠ACB=$\frac{π}{3},AB=\sqrt{7}$,AC=3,BD=1,则AD=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知复数z满足|z|=$\sqrt{2}$,z2的虚部为2,求复数z;
(2)求函数f(x)=ex、直线x=2及两坐标轴围成的图形绕x轴旋转一周所得几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设$\overrightarrow a$=(2,1),$\overrightarrow b$=(1,3),求$\overrightarrow a•\overrightarrow b$,$|{\overrightarrow a}|$及$\overrightarrow a$与$\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知|x-2|+|x+1|>a恒成立,则实数a的取值范围是(-∞,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f'(x)是f(x)=sinx+acosx的导函数,且f'($\frac{π}{4}$)=$\frac{{\sqrt{2}}}{4}$,则实数a的值为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

同步练习册答案