精英家教网 > 高中数学 > 题目详情
15.在△ABC中,$\overrightarrow{AP}$=$\frac{1}{6}$$\overrightarrow{AB}$+$\frac{2}{5}$$\overrightarrow{AC}$,则S△APB:S△CPB=12:13.

分析 可过PAC∥PD,PE∥AB,分别交AB,AC于D,E,则得到四边形ADPE为平行四边形,从而可以得出$\overrightarrow{AD}=\frac{1}{6}\overrightarrow{AB},\overrightarrow{AE}=\frac{2}{5}\overrightarrow{AC}$,从而有DP∥AC,且$DP=\frac{2}{5}AC$,PE∥AB,且$PE=\frac{1}{6}AB$,从而可得到${S}_{△APB}=\frac{2}{5}{S}_{△ABC},{S}_{△APC}=\frac{1}{6}{S}_{△ABC}$,${S}_{△CPB}=\frac{13}{30}{S}_{△ABC}$,这样便可得出S△APB:S△CPB的值.

解答 解:如图,过P作AC∥PD,交AB于D,作PE∥AB,交AC于E,则:
四边形ADPE为平行四边形,$\overrightarrow{AP}=\overrightarrow{AD}+\overrightarrow{AE}$;
∴$\overrightarrow{AD}=\frac{1}{6}\overrightarrow{AB},\overrightarrow{AE}=\frac{2}{5}\overrightarrow{AC}$;
∴$DP=\frac{2}{5}AC,PE=\frac{1}{6}AB$;
∴${S}_{△APB}=\frac{2}{5}{S}_{△ABC},{S}_{△APC}=\frac{1}{6}{S}_{△ABC}$;
∴${S}_{△CPB}=\frac{13}{30}{S}_{△ABC}$;
∴S△APB:S△CPB=12:13.
故答案为:12:13.

点评 考查向量加法的平行四边形法则,平面向量基本定理,向量数乘的几何意义,以及三角形的面积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=sin2x+4sinx+3(x∈R),则f(x)的最小值为(  )
A.3B.1C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=mx-$\frac{m}{x}$,g(x)=3lnx.
(1)当m=4时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若x∈(1,$\sqrt{e}$](e是自然对数的底数)时,不等式f(x)-g(x)<3恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系中,作出下列各角,在0°~360°范围内找出与其终边相同的角,并判定它是第几象限角.
(1)360°;(2)720°;(3)2012°;(4)-120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是两个单位向量,且(2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$)•(-2$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$)=2$\sqrt{2}$-1,则$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夹角为(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,内角A、B、C所对的边分别为a,b,c,已知c=$\sqrt{3}$,C=$\frac{π}{3}$,sinA=$\frac{4}{5}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.sin59°•cos89°-cos59°•sin89°的值为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源:2017届广西南宁二中等校高三8月联考数学(理)试卷(解析版) 题型:填空题

若直线是曲线的切线,也是曲线的切线,则_________.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年新疆库尔勒市高二上学期分班考试数学(理)试卷(解析版) 题型:解答题

在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且=2csinA

(1)确定角C的大小;

(2)若c=,且△ABC的面积为,求a+b的值

查看答案和解析>>

同步练习册答案