精英家教网 > 高中数学 > 题目详情
若函数f(x)=|x+1|+|2x-a|的最小值为3,则实数a的值为(  )
A、4或-8B、-5或-8
C、1或-5D、1或4
考点:函数的最值及其几何意义
专题:函数的性质及应用
分析:根据绝对值的性质通过分类讨论,将原函数转化为分段函数,现通过其最小值,求出参数a的值.
解答: 解:①f(x)=|x+1|+|2x-a|=|x+1|+2|x-
a
2
|,
a
2
>-1,即a>-2时,
f(x)=
-3x+a-1,x≤-1
-x+1+a,-1<x<
a
2
3x+1-a,x≥
a
2

则函数f(x)在(-∞,
a
2
]上单调递减,则[
a
2
,+∞)上单调递增,
则当x=
a
2
时,函数取得最小值,此时f(
a
2
)=
3a
2
+1-a=
a
2
+1=3

解得a=4.
②若
a
2
≤-1,即a≤-2时,
f(x)=
-3x+a-1,x≤
a
2
x-1-a,
a
2
<x<-1
3x+1-a,x≥-1

则函数f(x)在(-∞,
a
2
]上单调递减,则[
a
2
,+∞)上单调递增,
则当x=
a
2
时,函数取得最小值,此时f(
a
2
)=-
3a
2
+a-1=-
a
2
-1
=3,
解得a=-8.
综上,a=4或a=-8.
故选:A
点评:本题考查了函数最值求法,考查了分段函数的解析式的求法,还考查了分类讨论的数学思想,本题有一定的思维量,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x 
3
5
-2(x∈R)的反函数f-1(x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司今年3月欲抽调一批销售员推销A产品,根据过去的经验,每月A产品销售数量y(万件)与销售员的数量x(人)之间的函数关系式为:y=
920x
x2+3x+1600
(x>0).
(1)若要求在该月A产品的销售量大于10万件,销售员的数量应在什么范围内?
(2)在该月内,销售员数量为多少时,销售的数量最大?最大销售量为多少?(精确到0.1万件)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosax,sinax),
b
=(
3
cosax,-cosax),其中a>0,若f(x)=
a
b
的图象与y=m(m>0)相切,且切点横坐标成公差为π的等差数列.
(Ⅰ)求a和m的值;
(Ⅱ)在△ABC中,若f(
A
2
)=
3
2
,且BC=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设,现给出如下命题:
(1)f(x)=
1
x
在[1,3]上具有性质P;
(2)若f(x)在[1,3]上具有性质P,f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
(3)若f(x)在[1,3]上具有性质P,则f(x)在[1,3]上的图象是连续不断的;
(4)若f(x)在[1,3]上具有性质P,f(x2)在[1,
3
]上具有性质P;
其中正确的命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2|x-1|+x-1,g(x)=16x2-8x+1,若f(x)≤1的解集为M,g(x)≤4的解集为N,当x∈M∩N时,则函数F(x)=x2f(x)+x[f(x)]2的最大值是(  )
A、0
B、-
5
16
C、
4
9
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的三视图和直观图如图所示,其中M,N分别是AB,SA的中点.
(1)求直线NB与MC所成的角;
(2)求平面SAD与平面SMC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
x-1
,x≤0
lgx,x>0
,若关于x的方程f(f(x))=0有且只有一个实数解,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位准备建造一间面积为50m2的背面靠墙的矩形平顶房屋,房屋墙的高度为4m,房屋正面的造价为800元/m2,房屋侧面的造价为600元/m2,屋顶的造价为1000元/m2.若不计房屋背面的费用,问怎样设计房屋能使造价最低,最低造价是多少元?(
3
≈1.732,造价精确到1元,长度精确到0.01)

查看答案和解析>>

同步练习册答案