精英家教网 > 高中数学 > 题目详情
函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设,现给出如下命题:
(1)f(x)=
1
x
在[1,3]上具有性质P;
(2)若f(x)在[1,3]上具有性质P,f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
(3)若f(x)在[1,3]上具有性质P,则f(x)在[1,3]上的图象是连续不断的;
(4)若f(x)在[1,3]上具有性质P,f(x2)在[1,
3
]上具有性质P;
其中正确的命题是
 
考点:抽象函数及其应用
专题:函数的性质及应用
分析:根据f(x)在[a,b]上具有性质P的定义,结合函数凸凹性的性质,利用数形结合即可得到结论.
解答: 解:(1)f(x)=
1
x
在[1,3]上为减函数,则由图象可知对任意x1,x2∈[1,3],有f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)],成立,故(1)正确,
(2)在[1,3]上,f(2)=f[
x+(4-x)
2
]≤
1
2
[f(x)+f(4-x)],
∵F(x)在x=2时取得最大值1,
f(x)+f(4-x)≥2
f(x)≤f(x)max=1
f(4-x)≤f(x)max=1

∴f(x)=1,即对任意的x∈[1,3],有f(x)=1,故(2)正确;

(3)反例:f(x)=
(
1
2
)x
1≤x<3
2,x=3
,在[1,3]上满足性质P,
但f(x)在[1,3]上不是连续函数,故(3)不成立;
(4)反例:f(x)=-x在[1,3]上满足性质P,但f(x2)=-x2在[1,
3
]上不满足性质P,故(4)不成立;
综上正确的命题是(1),(2)
点评:本题是一道新定义题,实质上是考查函数的凹凸性及应用,解题的关键是理解这一性质,灵活运用这一性质,可通过举反例,以及利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
lim
x→-1
x2+ax+4
x2-1
=-
3
2
,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业原来每年可生产某种设备65件,每件设备的销售价格为10万元,为了增加企业效益,该企业今年准备投入资金x万元对生产工艺进行革新,已知每投入10万元资金生产的设备就增加1件,同时每件设备的生产成本a万元与投入资金x万元之间的关系是a=
25
x+25
,若设备的销售价格不变,生产的设备能全部卖出,投入资金革新后的年利润为y万元(年利润=年销售额-年投入资金额-年生产成本).
(Ⅰ)试将该企业的年利润y万元表示为投入资金x万元的函数;
(Ⅱ)该企业投入资金为多少万元时,企业的年利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在长方体ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1.
(1)求证:直线BC1∥平面D1AC.
(2)求D1C与平面D1BC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂的一个车间有5台同一型号机器均在独立运行,一天中每台机器发生故障的概率为0.1,若每一天该车间获取利润y(万元)与“不发生故障”的机器台数n(n∈N,n≤5)之间满足关系式:y=
-6(n≤2)
3n-3(n≥3)

(Ⅰ)求某一天中有两台机器发生故障的概率;
(Ⅱ)求这个车间一天内可能获取利润的均值(.精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|x+1|+|2x-a|的最小值为3,则实数a的值为(  )
A、4或-8B、-5或-8
C、1或-5D、1或4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABCA1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求证:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P在曲线y=x2上,点Q在直线y=2x-2上,则PQ的最小值为(  )
A、
5
5
B、
2
5
5
C、
3
5
5
D、
4
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC是边长为2
3
的等边三角形,p是以C为圆心,1为半径的圆上的任意一点,则
AP
BP
最小值为
 

查看答案和解析>>

同步练习册答案