精英家教网 > 高中数学 > 题目详情
如图,在三棱柱ABCA1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求证:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值.
考点:用空间向量求平面间的夹角,直线与平面垂直的判定
专题:空间角,空间向量及应用
分析:(1)由正方形性质得AA1⊥AC,由面面垂直得AA1垂直于这两个平面的交线AC,由勾股定理得AC⊥AB,由此能证明AA1⊥平面ABC.
(2)以A为原点建立空间直角坐标系A-xyz,求出平面A1BC1的法向量和平面B1BC1的一个法向量,由此利用向量法能求出二面角A1-BC1-B1的余弦值.
解答: (1)证明:因为AA1C1C为正方形,所以AA1⊥AC.
因为平面ABC⊥平面AA1C1C,
且AA1垂直于这两个平面的交线AC,
又AA1C1C是边长为4的正方形,AB=3,BC=5.
所以AC=4,AC2+AB2=BC2,即AC⊥AB,
又AA1∩AB=A,
所以AA1⊥平面ABC.
(2)解:由(1)知AA1⊥AC,AA1⊥AB.
由题知AB=3,BC=5,AC=4,所以AB⊥AC.
如图,以A为原点建立空间直角坐标系Axyz,
则B(0,3,0),A1(0,0,4),B1(0,3,4),C1(4,0,4).
设平面A1BC1的法向量为
n
=(x,y,z),
A1B
=(0,3,-4),
A1C1
=(4,0,0),
n
A1B
=3y-4z=0
n
A1C1
=4x=0

令z=3,则x=0,y=4,所以
n
=(0,4,3).
同理可得,平面B1BC1的一个法向量为
m
=(3,4,0).
所以cos<n,m>=
n•m
|n||m|
=
16
25

由题知二面角A1BC1B1为锐角,
所以二面角A1-BC1-B1的余弦值为
16
25
点评:本题考查直线与平面垂直的判定定理、平面与平面垂直的性质定理、勾股定理、二面角的求解等基础知识和空间向量的立体几何中的应用,意在考查方程思想、等价转化思想等数学思想方法和考生的空间想象能力、逻辑推理能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设sinα+cosα=
3
5
,则2sinα•cosα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4cosxsinx(x+
π
6
)-1.求f(x)的单调增区间
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)],则称f(x)在[a,b]上具有性质P.设,现给出如下命题:
(1)f(x)=
1
x
在[1,3]上具有性质P;
(2)若f(x)在[1,3]上具有性质P,f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
(3)若f(x)在[1,3]上具有性质P,则f(x)在[1,3]上的图象是连续不断的;
(4)若f(x)在[1,3]上具有性质P,f(x2)在[1,
3
]上具有性质P;
其中正确的命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若-3≤log0.5x≤
3
2
,求函数f(x)=(log2x-1)•log2
x
4
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的三视图和直观图如图所示,其中M,N分别是AB,SA的中点.
(1)求直线NB与MC所成的角;
(2)求平面SAD与平面SMC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),其中F1,F2为左、右焦点,O为坐标原点.直线l与椭圆交于P(x1,y1),Q(x2,y2)两个不同点.当直线l过椭圆C右焦点F2且倾斜角为
π
4
时,原点O到直线l的距离为
2
2
.又椭圆上的点到焦点F2的最近距离为
3
-1.
(I)求椭圆C的方程;
(Ⅱ)以OP,OQ为邻边做平行四边形OQNP,当平行四边形OQNP面积为
6
时,求平行四边形OQNP的对角线之积|ON|•|PQ|的最大值;
(Ⅲ)若抛物线C2:y2=2px(p>0)以F2为焦点,在抛物线C2上任取一点S(S不是原点O),以OS为直径作圆,交抛物线C2于另一点R,求该圆面积最小时点S的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,所有棱长都为2的正三棱柱BCD-B′C′D′,四边形ABCD是菱形,其中E为BD的中点
(Ⅰ)求证:平面BC′D∥面AB′D′;
(Ⅱ)求面AB′D′与面ABD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用综合法证明:若a>0,b>0,则
a3+b3
2
≥(
a+b
2
3

查看答案和解析>>

同步练习册答案