分析 设单调递减的等比数列{an}的公比为q,根据a2+a3+a4=28,且a3+2是a2,a4是等差中项,可得$\frac{{a}_{3}}{q}+{a}_{3}+{a}_{3}q$=28,2(a3+2)=a2+a4,即2(a3+2)=$\frac{{a}_{3}}{q}$+a3q,解出即可得出.
解答 解:设单调递减的等比数列{an}的公比为q,
∵a2+a3+a4=28,且a3+2是a2,a4是等差中项,
∴$\frac{{a}_{3}}{q}+{a}_{3}+{a}_{3}q$=28,2(a3+2)=a2+a4,即2(a3+2)=$\frac{{a}_{3}}{q}$+a3q,
解得a3=8,q=$\frac{1}{2}$,(q=2舍去).
∴an=${a}_{3}{q}^{n-3}$=8×$(\frac{1}{2})^{n-3}$=26-n.
故答案分别为:$\frac{1}{2}$;26-n.
点评 本题考查了等比数列与等差数列的通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | -1 | C. | 1 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{2}{3}$] | B. | {1} | C. | {$\frac{1}{2}$,$\frac{2}{3}$,1} | D. | [$\frac{1}{3}$,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 12 | C. | 8 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,+∞) | B. | (-1,1) | C. | (-1,0) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com