| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
分析 由ζ的取值为1,2,分别求得P(ζ=1)=$\frac{{{C}_{2}^{2}•C}_{2}^{1}}{{C}_{4}^{3}}$=$\frac{1}{2}$及P(ζ=2)=$\frac{{{C}_{2}^{2}•C}_{2}^{1}}{{C}_{4}^{3}}$=$\frac{1}{2}$,由期望公式即可求得ζ的数学期望.
解答 解:ζ的取值为1,2,
P(ζ=1)=$\frac{{{C}_{2}^{2}•C}_{2}^{1}}{{C}_{4}^{3}}$=$\frac{1}{2}$,
P(ζ=2)=$\frac{{{C}_{2}^{2}•C}_{2}^{1}}{{C}_{4}^{3}}$=$\frac{1}{2}$,
∴ζ的数学期望E(ζ)=1×$\frac{1}{2}$+2×1=$\frac{3}{2}$,
故答案选:C.
点评 本题考查离散型随机变量的分布列和期望,考查概率公式,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com