精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax-lnx,g(x)=
lnx
x
,它们的定义域都是(0,e],其中e≈2.718,a∈R
( I)当a=1时,求函数f(x)的单调区间;
( II)当a=1时,对任意x1,x2∈(0,e],求证:f(x1)>g(x2)+
17
27

( III)令h(x)=f(x)-g(x)•x,问是否存在实数a使得h(x)的最小值是3,如果存在,求出a的值;如果不存在,说明理由.
分析:( I)当a=1时,代入函数f(x)的解析式,求出其导数,利用导数求出它的单调区间,
( II)当a=1时,对任意x1,x2∈(0,e],要证明f(x1)>g(x2)+
17
27
成立,只需要求出函数f(x)的最小值,与函数g(x)=
lnx
x
的最大值,用函数f(x)的最小值减去函数g(x)=
lnx
x
的最大值令它们的差与
17
27
比较即可,
( III)求得h(x)的解析式,对其求导,根据实数a的取值范围研究函数的单调性,求出它的最小值,令其为3,解此方程求a的可能取值即可,若能求出,则说明存在,否则说明不存在.
解答:解:( I) 当a=1时,f(x)=x-lnx,x∈(0,e]
f′(x)=1-
1
x
=
x-1
x

令f'(x)>0∴1<x<e令f'(x)<0∴0<x<1
∴f(x)的单调增区间为(1,e),减区间为(0,1)
( II)由( I)知f(x)在(0,e]的最小值为f(1)=1
g′(x)=
1-lnx
x2
g'(x)≥0在区间(0,e]上成立
∴g(x)在(0,e]单调递增,故g(x)在区间(0,e]上有最大值g(e)=
1
e

要证对任意x1,x2∈(0,e],f(x1)>g(x2)+
17
27

即证f(x1)min>g(x2)max+
17
27

即证1>
1
e
+
17
27
,即证e>2.7
故命题成立
( III)h(x)=f(x)-g(x)•x=ax-2lnx,x∈(0,e]
h′(x)=a-
2
x
=
ax-2
x

(1)当a=0时,h'(x)<0,∴h(x)在(0,e]单调递减,
故h(x)的最小值为h(e)=-2,舍去
(2)当a>0时,由h'(x)<0,得0<x<
2
a

①当0<a≤
2
e
时,
2
a
≥e

∴h(x)在(0,e]单调递减,故h(x)的最小值为h(e)=ae-2=3,
a=
5
e
2
e
,舍去
②当a>
2
e
时,
2
a
<e

∴h(x)在(0,
2
a
]
单调递减,在(
2
a
,e)
单调递增,
故h(x)的最小值为h(
2
a
)=2-2ln
2
a
=3
a=2
e
,满足要求
(3)当a<0时,h'(x)<0在(0,e]上成立,
∴h(x)在(0,e]单调递减,故h(x)的最小值为h(e)=ae-2=3∴a=
5
e
2
e
,舍去
综合上述,满足要求的实数a=2
e
点评:本题考查利用导数研究函数在闭区间上的最值,求解此类问题的关键是求出其导数,利用导数研究清楚函数的单调性确定出函数的最值在那里取到,然后计算出其最值,求解本题正确转化很关键,如第二小题中将问题转化为最小值与最大值的差大于
17
27
,第三问中令最小值等于3建立方程求参数的值,转化化归是数学中的一个重要数学思想,在高中数学解题中经常用到,要注意此思想在本题中应用方法与规律,作为以后解题的借鉴.本题中也用到了分类讨论的思想,由此本题思维含量大,运算量大,解题难度较大,求解时要认真严谨,莫因马虎致错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案