精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,左顶点为,过椭圆的右焦点作互相垂直的两条直线分别交直线两点,交椭圆于另一点.

(Ⅰ)求椭圆的方程;

(Ⅱ)求证:直线恒过定点,并求出定点坐标.

【答案】(Ⅰ)(Ⅱ)直线恒过定点

【解析】

(Ⅰ)先得出a2,再由离心率计算出c的值,再由abc的关系求出b的值,即可得出椭圆C的方程;

(Ⅱ)设直线l1的方程为ykx1),可得出直线l2的方程为,将这两条直线分别于直线l的方程联立,可得出点MN的坐标,然后写出直线AM的方程,将直线AM的方程与椭圆方程联立,结合韦达定理求出点P的坐标,再写出直线PN的方程,通过直线PN的方程找出直线 PN所过的定点.

解:(Ⅰ)由题意

离心率,所以.

所以

所以椭圆的方程为

(Ⅱ)由题意,设

,得

,所以直线的方程为

,消元,得

,则,所以

所以

所以直线的斜率为

所以直线的方程为

直线恒过定点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】时,不等式成立,则实数k的取值范围是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻中共中央国务院关于精准扶贫政策的过程中,某单位定点帮扶甲、乙两个村各50户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、劳动能力情况、子女受教育情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标制成下图其中”表示甲村贫困户,“”表示乙村贫困户.

则认定该户为“绝对贫困户”,若则认定该户为“相对贫困户”,若则认定该户为“低收入户”;

则认定该户为“今年能脱贫户”,否则为“今年不能脱贫户”.

1)从甲村50户中随机选出一户,求该户为“今年不能脱贫的绝对贫困户的概率;

2)若从所有“今年不能脱贫的非绝对贫困户”中选3户,用表示所选3户中乙村的户数,求的分布列和数学期望

3)试比较这100户中,甲、乙两村指标的方差的大小(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若x轴为曲线的切线,求a的值

(Ⅱ)求函数上的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

,则的最大值为________

若函数有两个零点,则的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用分期付款的方式购买某家用电器一件,价格为1 150元,购买当天先付150元,以后每月这一天还款一次,每次还款数额相同,20个月还清,月利率为1%,按复利计算.若交付150元后的第一个月开始算分期付款的第一个月,全部欠款付清后,请问买这件家电实际付款多少元?每月还款多少元?(最后结果保留4个有效数字)

参考数据:(1+1%)19=1.208,(1+1%)20=1.220,(1+1%)21=1.232.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为1,则下列四个命题正确的是(

A.直线BC与平面所成的角等于B.C到面的距离为

C.两条异面直线所成的角为D.三棱柱外接球表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.

(1)求椭圆的标准方程;

(2)若不经过点的直线与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在用1,2,…,8这八个数码所组成的 全部无重复数字的八位数中,能被11整除的有______.

查看答案和解析>>

同步练习册答案