10£®¶¨ÒåÔÚDÉϵĺ¯Êýf£¨x£©£¬ÈôÂú×㣺¶ÔÈÎÒâx¡ÊD£¬´æÔÚ³£ÊýM£¾0£¬¶¼ÓÐ|f£¨x£©|¡ÜM³ÉÁ¢£¬Ôò³Æf£¨x£©ÊÇDÉϵÄÓн纯Êý£¬ÆäÖÐM³ÆÎªº¯Êýf£¨x£©µÄÉϽ磮
£¨1£©Éèf£¨x£©=$\frac{x}{x+1}$£¬ÅжÏf£¨x£©ÔÚ[-$\frac{1}{2}$£¬$\frac{1}{2}$]ÉÏÊÇ·ñÓÐÓн纯Êý£¬ÈôÊÇ£¬ËµÃ÷ÀíÓÉ£¬²¢Ð´³öf£¨x£©ÉÏËùÓÐÉϽçµÄÖµµÄ¼¯ºÏ£¬Èô²»ÊÇ£¬Ò²Çë˵Ã÷ÀíÓÉ£»
£¨2£©Èôº¯Êýg£¨x£©=1+2x+a•4xÔÚx¡Ê[0£¬2]ÉÏÊÇÒÔ3ΪÉϽçµÄÓн纯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©»¯¼òf£¨x£©=$\frac{x}{x+1}$=1-$\frac{1}{1+x}$£¬´Ó¶ø¿ÉµÃ-1¡Üf£¨x£©¡Ü$\frac{1}{3}$£»´Ó¶øÈ·¶¨|f£¨x£©|¡Ü1£»´Ó¶ø½âµÃ£»
£¨2£©ÓÉÌâÒâÖª|g£¨x£©|¡Ü3ÔÚ[0£¬2]ÉϺã³ÉÁ¢£»´Ó¶ø¿ÉµÃ-$\frac{4}{{4}^{x}}$-$\frac{1}{{2}^{x}}$¡Üa¡Ü$\frac{2}{{4}^{x}}$-$\frac{1}{{2}^{x}}$£»´Ó¶ø»»ÔªÁît=$\frac{1}{{2}^{x}}$£¬Ôòt¡Ê[$\frac{1}{4}$£¬1]£»´Ó¶ø¿ÉµÃ-4t2-t¡Üa¡Ü2t2-tÔÚ[$\frac{1}{4}$£¬1]ÉϺã³ÉÁ¢£»´Ó¶ø»¯Îª×îÖµÎÊÌ⣮

½â´ð ½â£º£¨1£©f£¨x£©=$\frac{x}{x+1}$=1-$\frac{1}{1+x}$£¬Ôòf£¨x£©ÔÚ[-$\frac{1}{2}$£¬$\frac{1}{2}$]ÉÏÊÇÔöº¯Êý£»
¹Êf£¨-$\frac{1}{2}$£©¡Üf£¨x£©¡Üf£¨$\frac{1}{2}$£©£»¹Ê-1¡Üf£¨x£©¡Ü$\frac{1}{3}$£»
¹Ê|f£¨x£©|¡Ü1£»
¹Êf£¨x£©ÊÇÓн纯Êý£»
¹Êf£¨x£©ÉÏËùÓÐÉϽçµÄÖµµÄ¼¯ºÏΪ[1£¬+¡Þ£©£»
£¨2£©¡ßº¯Êýg£¨x£©=1+2x+a•4xÔÚx¡Ê[0£¬2]ÉÏÊÇÒÔ3ΪÉϽçµÄÓн纯Êý£¬
¡à|g£¨x£©|¡Ü3ÔÚ[0£¬2]ÉϺã³ÉÁ¢£»
¼´-3¡Üg£¨x£©¡Ü3£¬
¡à-3¡Ü1+2x+a•4x¡Ü3£¬
¡à-$\frac{4}{{4}^{x}}$-$\frac{1}{{2}^{x}}$¡Üa¡Ü$\frac{2}{{4}^{x}}$-$\frac{1}{{2}^{x}}$£»
Áît=$\frac{1}{{2}^{x}}$£¬Ôòt¡Ê[$\frac{1}{4}$£¬1]£»
¹Ê-4t2-t¡Üa¡Ü2t2-tÔÚ[$\frac{1}{4}$£¬1]ÉϺã³ÉÁ¢£»
¹Ê£¨-4t2-t£©max¡Üa¡Ü£¨2t2-t£©min£¬t¡Ê[$\frac{1}{4}$£¬1]£»
¼´-$\frac{1}{2}$¡Üa¡Ü-$\frac{1}{8}$£»
¹ÊʵÊýaµÄȡֵ·¶Î§Îª[-$\frac{1}{2}$£¬-$\frac{1}{8}$]£®

µãÆÀ ±¾Ì⿼²éÁ˺¯ÊýµÄ»¯¼òÔËËãµÄÓ¦Óü°×ª»¯Ë¼ÏëµÄÓ¦Óã¬Í¬Ê±¿¼²éÁ˺ã³ÉÁ¢ÎÊÌâÓë×îÖµÎÊÌâµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Éè2x-1=a£¬2y+2=b£¬Ôò2x+y=$\frac{ab}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®tan78¡ã-tan33¡ãtan78¡ã-tan33¡ãµÈÓÚ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªtan¦Á=-3£¬¦Á¡Ê£¨-¦Ð£¬0£©£¬Ôò$\sqrt{10}$cos¦Á-tan2¦Á=£¨¡¡¡¡£©
A£®$\frac{3}{4}$B£®-$\frac{3}{4}$C£®$\frac{1}{4}$D£®-$\frac{1}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖª¶¯µãP£¨x£¬y£©ÔÚ¹ýµã£¨-$\frac{3}{2}$£¬-2£©ÇÒÓëÔ²M£º£¨x-1£©2+£¨y+2£©2=5ÏàÇеÄÁ½ÌõÖ±ÏߺÍx-y+1=0ËùΧ³ÉµÄÇøÓòÄÚ£¬Ôòz=|x+2y-3|µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{5}}{5}$B£®1C£®$\sqrt{5}$D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{|x+a|£¬x¡Ü0}\\{x+\frac{4}{x}+a£¬x£¾0}\end{array}\right.$£¬Èôf£¨0£©ÊǸú¯ÊýµÄ×îСֵ£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[-2£¬0]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄǰnÏîºÍΪSnÂú×ãSn=£¨$\frac{{{a_n}+1}}{2}$£©2£¨n¡ÊN*£©£®
£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©ÉèTnΪÊýÁÐ{$\frac{1}{{{a_n}{a_{n+1}}}}$}µÄǰnÏîºÍ£¬ÈôTn¡Ü¦Ëan+1¶Ô?n¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊý¦ËµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÉèµãA£¨1£¬0£©£¬B£¨0£¬1£©£¬C£¨a£¬b£©£¬D£¨c£¬d£©£¬Èô²»µÈʽ$\overrightarrow{CD}$2¡Ý£¨m-2£©$\overrightarrow{OC}$•$\overrightarrow{OD}$+m£¨$\overrightarrow{OC}$•$\overrightarrow{OB}$£©•£¨$\overrightarrow{OD}$•$\overrightarrow{OA}$£©¶ÔÈκÎʵÊýa£¬b£¬c£¬d¶¼³ÉÁ¢£¬ÔòʵÊýmµÄ×î´óÖµÊÇ$\sqrt{5}$-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®´º½ÚÆÚ¼ä£¬Ð¡ÍõÓÃ˽¼Ò³µËÍ4λÅóÓѵ½Èý¸öÂÃÓεãÈ¥ÓÎÍæ£¬Ã¿Î»ÅóÓÑÔÚÿһ¸ö¾°µãϳµµÄ¸ÅÂÊΪ$\frac{1}{3}$£¬Óæαíʾ4λÅóÓÑÔÚµÚÈý¸ö¾°µãϳµµÄÈËÊý£¬Çó£º
£¨1£©ÀëÉ¢ÐÍËæ»ú±äÁ¿¦ÎµÄ¸ÅÂÊ·Ö²¼£»
£¨2£©ÀëÉ¢ÐÍËæ»ú±äÁ¿¦ÎµÄ¾ùÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸