分析 (1)离散型随机变量ξ的可能取值为0,1,2,3,4,分别求出相应的概率,由此能求出ξ的分布列.
(2)由离散型随机变量ξ的分布列,能求出离散型随机变量ξ的均值.
解答 解:(1)离散型随机变量ξ的可能取值为0,1,2,3,4,
P(ξ=0)=($\frac{2}{3}$)4=$\frac{16}{81}$,
P(ξ=1)=$\frac{{C}_{4}^{1}•{2}^{3}}{{3}^{4}}$=$\frac{32}{81}$,
P(ξ=2)=$\frac{{C}_{4}^{2}•{2}^{4}}{{3}^{4}}$=$\frac{8}{27}$,
P(ξ=3)=$\frac{{C}_{4}^{3}•2}{{3}^{4}}$=$\frac{8}{81}$,
P(ξ=4)=($\frac{1}{3}$)4=$\frac{1}{81}$,
∴ξ的分布列为:
| ξ | 0 | 1 | 2 | 3 | 4 |
| P | $\frac{16}{81}$ | $\frac{32}{81}$ | $\frac{8}{27}$ | $\frac{8}{81}$ | $\frac{1}{81}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2$\sqrt{2}$) | B. | (-∞,2$\sqrt{2}$] | C. | (-∞,3) | D. | (-∞,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com