分析 由题意可得lnx>0,lny>0,lnx•lny=$\frac{1}{4}$,由基本不等式可得lnx+lny的最小值,由对数的运算可得xy的最小值.
解答 解:∵x>1,y>1,∴lnx>0,lny>0,
又∵lnx,$\frac{1}{2}$,lny成等比数列,
∴$\frac{1}{4}$=lnxlny
由基本不等式可得lnx+lny≥2$\sqrt{lnxlny}$=1,
当且仅当lnx=lny,即x=y=$\sqrt{e}$时取等号,
故ln(xy)=lnx+lny≥1=lne,即xy≥e,
故xy的最小值为:e
故答案为:e
点评 本题主要考查了等比中项的性质和基本不等式的应用.等比中项的性质即若a,b,c成等比数列,则有b2=ac.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $N_≠^?M$ | B. | M=N | C. | M∪∁RN=R | D. | M∩∁RN=M |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{4}{3}$ | C. | 3 | D. | -3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com