精英家教网 > 高中数学 > 题目详情
5.已知动点P(x,y)在过点(-$\frac{3}{2}$,-2)且与圆M:(x-1)2+(y+2)2=5相切的两条直线和x-y+1=0所围成的区域内,则z=|x+2y-3|的最小值为(  )
A.$\frac{\sqrt{5}}{5}$B.1C.$\sqrt{5}$D.5

分析 通过设过点(-$\frac{3}{2}$,-2)且与圆M相切的直线方程,利用直线与圆的位置关系可求出斜率,进而作出可行域,计算即得结论.

解答 解:设过点(-$\frac{3}{2}$,-2)且与圆M相切的直线方程为:y+2=k(x+$\frac{3}{2}$),
化简得:2kx-2y+3k-4=0,
则$\sqrt{5}$=$\frac{|2k+4+3k-4|}{\sqrt{4{k}^{2}+4}}$,解得:k=±2,
∴2x-y+1=0或2x+y+5=0,
∴约束条件表示的可行域如图,其中A(0,1),B(-2,-1),C(-$\frac{3}{2}$,-2),
所以z=|x+2y-3|的最小值为|0+2-3|=1,
故选:B.

点评 本题考查简单线性规划的应用,涉及直线与圆的位置关系、点到直线的距离公式等基础知识,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,以坐标原点为极点,以x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=4sinθ,θ∈[0,$\frac{π}{2}$],先把半圆C的极坐标方程化为直角坐标方程,再化为参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.过点P(2,1)作直线l交x轴,y轴的正半轴于A、B两点,O为原点.求:
(1)当△AOB面积最小时的直线l的方程;
(2)当|OA|+|OB|最小时,求直线l的方程;
(3)当|PA|•|PB|最小时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设f(α)=$\frac{2sin(π+α)cos(π-α)-cos(π+α)}{1+si{n}^{2}α+sin(π-α)-co{s}^{2}(π-α)}$.
(1)若α=-$\frac{17}{6}$π,求f(α)的值;
(2)若α是锐角,且sin(α-$\frac{3}{2}$π)=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$\overrightarrow{AB}$=(2,4),$\overrightarrow{BC}$=(1,-2),$\overrightarrow{OC}$=$\frac{1}{2}$$\overrightarrow{AC}$,求点C的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.定义在D上的函数f(x),若满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.
(1)设f(x)=$\frac{x}{x+1}$,判断f(x)在[-$\frac{1}{2}$,$\frac{1}{2}$]上是否有有界函数,若是,说明理由,并写出f(x)上所有上界的值的集合,若不是,也请说明理由;
(2)若函数g(x)=1+2x+a•4x在x∈[0,2]上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列说法正确的是(  )
A.P(B|A)<P(AB)B.P(B|A)=$\frac{P(B)}{P(A)}$是可能的
C.0<P(B|A)<1D.P(A|A)=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)满足f(a+b)=f(a)•f(b),f(1)=2.则$\frac{{f}^{2}(1)+f(2)}{f(1)}+\frac{{f}^{2}(2)+f(4)}{f(3)}$+$\frac{{f}^{2}(3)+f(6)}{f(5)}$+…+$\frac{{f}^{2}(2016)+f(4032)}{f(4031)}$=8064.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=2x2+3,g(x)=a$\sqrt{{x}^{2}+1}$,若对于任意的x∈R,f(x)>g(x)恒成立,则实数a的取值范围是(  )
A.(-∞,2$\sqrt{2}$)B.(-∞,2$\sqrt{2}$]C.(-∞,3)D.(-∞,3]

查看答案和解析>>

同步练习册答案