精英家教网 > 高中数学 > 题目详情
如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论:
①三棱锥A-D1PC的体积不变;
②A1P∥平面ACD1
③DP⊥BC1
④平面PDB1⊥平面ACD1
其中正确的结论的个数是(  )
A、1个B、2个C、3个D、4个
考点:命题的真假判断与应用,棱柱的结构特征
专题:空间位置关系与距离
分析:利用空间中线线、线面、面面间的位置关系求解.
解答: 解:对于①,由题意知AD1∥BC1,从而BC1∥平面AD1C,
故BC1上任意一点到平面AD1C的距离均相等,
所以以P为顶点,平面AD1C为底面,则三棱锥A-D1PC的体积不变,故①正确;
对于②,连接A1B,A1C1,A1C1∥AD1且相等,由于①知:AD1∥BC1
所以BA1C1∥面ACD1,从而由线面平行的定义可得,故②正确;
对于③,由于DC⊥平面BCB1C1,所以DC⊥BC1
若DP⊥BC1,则BC1⊥平面DCP,
BC1⊥PC,则P为中点,与P为动点矛盾,故③错误;
对于④,连接DB1,由DB1⊥AC且DB1⊥AD1
可得DB1⊥面ACD1,从而由面面垂直的判定知,故④正确.
故选:C.
点评:本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图:长方体ABCD-A1B1C1D1中,AB=3,AD=AA1=2,E为AB上一点,且AE=2EB,F为CC1的中点,P为C1D1上动点,当EF⊥CP时,PC1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+x,g(x)=lnx+x,h(x)=x-
1
4x
的零点依次为a,b,c,则(  )
A、c<b<a
B、a<b<c
C、c<a<b
D、b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=ax+loga(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为(  )
A、2
B、4
C、
1
2
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)定义域为(-∞,+∞),满足f(x+1)=2f(x-1),当x∈[0,2)时,f(x)=
4-x2-3x,x∈[0,1)
logx,x∈[1,2)
,若x∈[-4,-2)时,f(x)≤
m
4
+
3
4m
恒成立,则实数m的取值范围(  )
A、(-∞,0]∪[1,3)
B、(0,1]∪[3,+∞)
C、(0,1)∪[3,+∞)
D、(0,1]∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体交于一点的三条棱上各取一点,过这三点作一截面,那么这个截面是(  )
A、钝角三角形
B、锐角三角形
C、直角三角形
D、以上三种图形都可能

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f定义在正整数有序对的集合上,并满足f(x,x)=x,f(x,y)=f(y,x),(x+y)f(x,y)=yf(x,x+y),则f(14,52)的值为(  )
A、364B、182
C、91D、无法计算

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂2011年的年产值是100万元,计划以后每年的年产值在上一年的基础上增加10%,求2021年该厂的年产值是多少万元?(精确到万元)

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)证明:sinx+siny=2sin
x+y
2
cos
x-y
2

(2)三角形ABC中,a、b、c分别为角A、B、C所对的边,若a,b,c成等差数列,求证:tan
A
2
tan
C
2
≥tan2
B
2

查看答案和解析>>

同步练习册答案