精英家教网 > 高中数学 > 题目详情

已知函数(其中为常数且)在处取得极值.
(I) 当时,求的单调区间;
(II) 若上的最大值为,求的值.

(I)单调递增区间为,单调递减区间为(II)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,函数是区间上的减函数.
(1)求的最大值;
(2)若恒成立,求的取值范围;
(3)讨论关于的方程的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数,关于x的不等式的解集为,其中m为非零常数.设.
(1)求a的值;
(2)如何取值时,函数存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象与的图象关于直线对称。
(Ⅰ)若直线的图像相切, 求实数的值;
(Ⅱ)判断曲线与曲线公共点的个数.
(Ⅲ)设,比较的大小, 并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在[t,t+2](t>0)上的最小值;
(2)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明对一切x∈(0,+∞),都有lnx>成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x3-3ax2+2bx在点x=1处有极小值-1.
(1)求ab
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)对于任意实数恒成立,求的最大值;
(2)若方程有且仅有一个实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求抛物线y=x2上点到直线x-y-2=0的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求抛物线f(x)=1+x2与直线x=0,x=1,y=0所围成的平面图形的面积S.

查看答案和解析>>

同步练习册答案