已知二次函数
,关于x的不等式
的解集为
,其中m为非零常数.设
.
(1)求a的值;
(2)
如何取值时,函数
存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:![]()
科目:高中数学 来源: 题型:解答题
某商场销售某种商品的经验表明,该商品每日的销售量
(单位:千克)与销售价格
(单位:元/千克)满足关系式
其中
为常数。己知销售价格为5元/千克时,每日可售出该商品11千克。
(1)求
的值;
(2)若该商品的成本为3元/千克,试确定销售价格
的值,使商场每日销售该商品所获得的利润最大。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(
、
为常数),在
时取得极值.
(1)求实数
的取值范围;
(2)当
时,关于
的方程
有两个不相等的实数根,求实数
的取值范围;
(3)数列
满足
(
且
),
,数列
的前
项和为
,
求证:
(
,
是自然对数的底).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
据统计某种汽车的最高车速为120千米∕时,在匀速行驶时每小时的耗油量
(升)与行驶速度
(千米∕时)之间有如下函数关系:
。已知甲、乙两地相距100千米。
(1)若汽车以40千米∕时的速度匀速行驶,则从甲地到乙地需耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数![]()
(I)若
,是否存在a,b
R,y=f(x)为偶函数.如果存在.请举例并证明你的结论,如果不存在,请说明理由;
〔II)若a=2,b=1.求函数
在R上的单调区间;
(III )对于给定的实数
成立.求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设
,函数
.
(1)若
,求函数
在区间
上的最大值;
(2)若
,写出函数
的单调区间(不必证明);
(3)若存在
,使得关于
的方程
有三个不相等的实数解,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
甲、乙二人平时跑步路程与时间的关系以及百米赛跑路程和时间的关
系分别如图①、②所示.问:
(1)甲、乙二人平时跑步哪一个跑得快?
(2)甲、乙二人百米赛跑,快到终点时,谁跑得快(设Δs为s的增量)?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com