| A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 如图所示,BD1⊥平面AB1C,平面α过直线BD,α⊥平面AB1C,可得平面α即为平面DBB1D1.设AC∩BD=O.可得α∩平面AB1C=m为OB1.同理可得:平面A1C1D即为平面β.又A1D∥B1C,可得m,n所成角为∠OB1C,根据△AB1C为正三角形,即可得出.
解答 解:如图所示,![]()
∵BD1⊥平面AB1C,平面α过直线BD,α⊥平面AB1C,
∴平面α即为平面DBB1D1.设AC∩BD=O.
∴α∩平面AB1C=m为OB1.
∵平面A1C1D过直线A1C1,与平面AB1C平行,
而平面β过直线A1C1,β∥平面AB1C,
∴平面A1C1D即为平面β.
β∩平面ADD1A1=A1D=n,
又A1D∥B1C,
∴m,n所成角为∠OB1C,
由△AB1C为正三角形,则cos∠OB1C=cos$\frac{π}{6}$=$\frac{\sqrt{3}}{2}$.
故选:D.
点评 本题考查了正方体的性质、空间位置关系、等边三角形的性质、空间角,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{{\sqrt{2}}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=sin({x+\frac{π}{6}})$ | B. | $y=cos({2x-\frac{π}{6}})$ | C. | $y=sin({2x-\frac{π}{6}})$ | D. | $y=cos({4x-\frac{π}{3}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com