精英家教网 > 高中数学 > 题目详情
8.一个正三棱柱底面边长为3,侧棱长为2,点D在侧棱BB1上,点E在侧棱CC1上,求AD+DE+EA1的最小值.

分析 直接利用三棱柱的侧面展开图,通过求解三角形即可得到结果.

解答 解:正三棱柱的侧面展开图如图:

由题意可知AD+DE+EA1的最小值就是侧面展开图中对角线AA1的长度,
AA1=$\sqrt{{2}^{2}+{9}^{2}}$=$\sqrt{85}$.

点评 本题考查几何体表面距离的最值问题,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设|$\overrightarrow{a}$|=8,|$\overrightarrow{b}$|=12,则|$\overrightarrow{a}$+$\overrightarrow{b}$|的最大值与最小值分别为[4,20].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数f(x)=x2-2ax+3在区间[1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一工厂生产的10个产品中有9个一等品,1个二等品,现从这批产品中抽取4个,求其中恰好有一个二等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若1是方程x3+kx2+3x-4=0的一个根,则式子x3+kx2+3x-4的因式分解为x3+kx2+3x-4=(x-1)(x2+x+4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设x,y∈R+且x+y+z=1,求u=$\frac{3{x}^{2}-x}{1+{x}^{2}}$+$\frac{3{y}^{2}-y}{1+{y}^{2}}$+$\frac{3{z}^{2}-z}{1+{z}^{2}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.把直线x-y+1=0沿向量$\overrightarrow{a}$=(1,0)方向平移,使之与圆(x-2)2+(y-1)2=1相切,则平移的距离为(  )
A.$\sqrt{2}-1$B.$\sqrt{2}+2$C.$\sqrt{2}-1$与$\sqrt{2}+1$D.2-$\sqrt{2}$与2+$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示是一个几何体的三视图,用斜二测画法画出该几何体的直观图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a>0,“x∈{-a,a}”是“|x|=a”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.非充分非必要条件

查看答案和解析>>

同步练习册答案