精英家教网 > 高中数学 > 题目详情
如图所示,已知AC⊥平面CDE,BD∥AC,△ECD为等边三角形,F为ED边上的中点,且CD=BD=2AC=2,
(1)求证:CF∥面ABE; 
(2)求证:面ABE⊥平面BDE;
(3)求该几何体ABECD的体积.
考点:平面与平面垂直的判定,组合几何体的面积、体积问题
专题:空间位置关系与距离
分析:(1)取BE的中点G,连结FG,推导出CF∥AG,由此能证明CF∥面ABE.
(2)由△ECD为等边三角形,推导出AG⊥面BDE,由此能证明面ABE⊥平面BDE.
(3)几何体ABECD是四棱锥E-ABCD,由此能求出该几何体ABECD的体积.
解答: 解:(1)取BE的中点G,
连FG,∵FG∥
1
2
BD
,AC∥
1
2
BD

∴CF∥AG,
又CF不包含于面ABE,AG?面ABE,
∴CF∥面ABE,…(4分)
(2)∵△ECD为等边三角形,
∴CF⊥ED又CF⊥BD,
∴CF⊥面BDE,CF∥AG
∴AG⊥面BDE,
又AG?平面ABE,∴面ABE⊥平面BDE,…(8分)
(3)几何体ABECD是四棱锥E-ABCD,EH⊥CD
∴EH⊥面ABCD,
VE-ABCD=
1
3
1
2
(1+2)•2•
3
=
3
.…(12分)
点评:本题考查直线与平面平行的证明,考查平面与平面垂直的证明,考查几何体体积的求法,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,过圆内接四边形ABCD的顶点C引圆的切线MN,AB为圆直径,若∠BCM=38°,则∠ABC=(  )
A、38°B、52°
C、68°D、42°

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成的频率分布表和频率分布直方图(如图所示)解决下列问题:
组别分组频数频率
第1组[50,60)80.16
第2组[60,70)a
第3组[70,80)200.40
第4组[80,90)0.08
第5组[90,100)2b
合计
(Ⅰ)写出a、b、x、y的值;
(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学现广场参加环保知识的志愿宣传活动,求所抽取的2名同学中至少有1名同学来自第5组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为4的正方形ABCD和等腰直角三角形ABE按图拼为新的几何图形,△ABE中,AB=AE,连结DE,CE,若DE=4
2
,M为BE中点
(Ⅰ)求CM与DE所成角的大小;
(Ⅱ)若N为CE中点,证明:MN∥平面ADE;
(Ⅲ)证明:平面CAM⊥平面CBE.

查看答案和解析>>

科目:高中数学 来源: 题型:

某园林局对1000株树木的生长情况进行调查,其中杉树600株,槐树400株.现用分层抽样方法从这1000株树木中随机抽取100株,杉树与槐树的树干周长(单位:cm)的抽查结果如下表:
树干周长(单位:cm)[30,40)[40,50)[50,60)[60,70)
杉树61921x
槐树420y6
(1)求x,y值及估计槐树树干周长的众数;
(2)如果杉树的树干周长超过60cm就可以砍伐,请估计该片园林可以砍伐的杉树有多少株?
(3)树干周长在30cm到40cm之间的4株槐树有1株患虫害,现要对这4株树逐一进行排查直至找出患虫害的树木为止.求排查的树木恰好为2株的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

有排成一行的7个空位置,3位女生去坐,要求任何两个女生之间都要有空位,共有
 
种不同的坐法.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD为正方形,PD⊥底面ABCD,PD=AD.
(1)求证:平面PAC⊥平面PBD;
(2)求PC与平面PBD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
ax2
2
+(a-1)x-
3
2a
,其中a>0
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)有两个相异的零点x1,x2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,△ABC内接于⊙O,AB=AC,直线XY切⊙O于点C,BD∥XY,AC、BD相交于E.
(1)求证:△ABE≌△ACD;
(2)若AB=6cm,BC=4cm,求AE的长.

查看答案和解析>>

同步练习册答案