精英家教网 > 高中数学 > 题目详情
函数f(x)=2x和g(x)=x3的图象的示意图如右图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.

(1)请指出示意图中曲线C1,C2分别对应哪一个函数?
(2)若x1∈,x2∈,且a,b∈{1,2,3,4,5,6,7,8,9,10,11,12}指出a,b的值,并说明理由;
(3)结合函数图象示意图,判断f(6),g(6),f(2010),g(2010)的大小.
(1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.
(2)a=1,b=9.
理由如下:
令φ(x)=f(x)-g(x)=2x-x3,则x1,x2为函数φ(x)的零点.
∵φ(1)=1>0,φ(2)=-4<0,φ(9)=29-93<0,φ(10)=210-103>0,
∴方程φ(x)=f(x)-g(x)的两个零点x1∈(1,2),x2∈(9,10)
因此整数a=1,b=9.
(3)从图象上可以看出,当x1<x<x2时,f(x)<g(x),
∴f(6)<g(6).
当x>x2时,f(x)>g(x),∴g(2010)<f(2010).
∵g(6)<g(2010),
∴f(6)<g(6)<g(2010)<f(2010).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)判断y=1-2x3在(-)上的单调性,并用定义证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知定义在上的函数在区间上的最大值是,最小值是.
(1)求函数的解析式;
(2)若时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知9x-10·3x+9≤0,求函数y=x-1-4x+2的最大值和最小值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数在区间内是减函数,则实数的取值范围是
A.B.C.D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数是偶函数,且上是减函数,则      

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对a,b∈R,记max{a,b}=,函数f(x)=max{|x+1|,|x-2|}(x∈R)的最小值是_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=ax2+bx+c(a≠0),且f(x)=x无实根,下列命题中:
(1)方程f [f (x)]=x一定无实根;
(2)若a>0,则不等式f [f (x)]>x对一切实数x都成立;
(3)若a<0,则必存在实数x0,使f [f (x0)]>x0;
(4)若a+b+c=0,则不等式f [f (x)]<x对一切x都成立;
正确的序号有         .                

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果函数)在区间上是增函数,那么实数的取值范围为 (   )
                              

查看答案和解析>>

同步练习册答案