精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\left\{\begin{array}{l}{1-|x+1|,x<1}\\{{x}^{2}-4x+2,x≥1}\end{array}\right.$,则函数g(x)=f(x)-21-|x|的零点个数是(  )
A.1B.2C.3D.4

分析 函数g(x)的零点个数转化为函数f(x)与y=$\frac{2}{{2}^{|x|}}$的图象的交点的个数,从而解得.

解答 解:令g(x)=0得,f(x)=$\frac{2}{{2}^{|x|}}$,
作函数f(x)与y=$\frac{2}{{2}^{|x|}}$的图象如下,

结合图象可知,函数的图象有两个不同的交点,
故函数g(x)的零点个数为2,
故选:B.

点评 本题考查了函数的零点与方程的根,方程的根与函数的图象的交点的关系应用,考查了数形结合的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设$\frac{π}{2}$<α<π,且3sin2α+2sinα+12cosα+4=0.
(1)求cosα的值;
(2)求sin($α-\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.复数1-$\frac{i}{3+i}$等于(  )
A.$\frac{9}{10}$-$\frac{3}{10}$iB.$\frac{1}{10}$+$\frac{3}{10}$iC.$\frac{9}{10}$+$\frac{3}{10}$iD.$\frac{1}{10}$-$\frac{3}{10}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$和圆O:x2+y2=b2(其中圆心O为原点),过椭圆C上异于上、下顶点的一点P(x0,y0)引圆O的两条切线,切点分别为A,B.
(1)求直线AB的方程;
(2)求三角形OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x-lnx,g(x)=$\frac{{e}^{x}-bx-b}{{x}^{2}}$,b∈[0,$\frac{1}{3}$).(其中e为自然对数的底数)
(1)求函数f(x)的单调区间;
(2)证明f(x)+g(x)>1+$\frac{e}{3}$对x∈[1,+∞)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=ex(3x-1)-ax+a,其中a<1,若仅有两个整数x0,使得f(x0)<0,则a的取值范围是(  )
A.[-$\frac{2}{e}$,1]B.[$\frac{7}{3{e}^{2}}$,1]C.[0,$\frac{2}{e}$]D.[$\frac{7}{3{e}^{2}}$,$\frac{2}{e}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}满足an+1+(-1)nan=2n-1,则数列{an}的前32项之和为(  )
A.448B.528C.548D.608

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某校为了解高中学生的阅读情况,拟采取分层抽样的方法从该校三个年级的学生中抽取一个容量为60的样本进行调查,已知该校有高一学生600人,高二学生400人,高三学生200人,则应从高一学生抽取的人数为30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知变换T把平面上的点A(2,0),B(0,$\sqrt{3}$)分别变换成点A'(2,2),B'(-$\sqrt{3}$,$\sqrt{3}$).
(1)试求变换T对应的矩阵M;
(2)若曲线C在变换T的作用下所得到的曲线的方程为x2-y2=4,求曲线C的方程.

查看答案和解析>>

同步练习册答案