精英家教网 > 高中数学 > 题目详情
12.如图,在三棱柱ABC-A1B1C1中,四边形AA1C1C是边长为2的菱形,平面ABC⊥平面AA1C1C,∠A1AC=60°,∠BCA=90°.
(Ⅰ)求证:A1B⊥AC1
(Ⅱ)已知点E是AB的中点,BC=AC,求直线EC1与平面ABB1A1所成的角的正弦值.

分析 (Ⅰ)首先利用面面垂直转化成线面垂直,进一步得出线线垂直.
(Ⅱ)根据两两垂直的关系,建立空间直角坐标系,求出平面的法向量,进一步利用向量的夹角余弦公式求出线面的夹角的正弦值.

解答 (Ⅰ)证明:取AC的中点O,连接A1O,
由于平面ABC⊥平面AA1C1C,A1O⊥AC,
所以:A1O⊥平面ABC,
所以:A1O⊥BC,
又BC⊥AC,
所以:BC⊥平面A1AC,
又AC1⊥A1C,A1C为A1B的射影,
所以:A1B⊥AC1
(Ⅱ)以O为坐标原点建立空间直角坐标系O-xyz,
A(0,-1,0),B(2,1,0),C(0,1,0),C1(0,2,$\sqrt{3}$),
则:$\overrightarrow{AB}=(2,2,0)$,$\overrightarrow{{BB}_{1}}=\overrightarrow{{CC}_{1}}=(0,1,\sqrt{3})$,
设$\overrightarrow{m}$=(x,y,z)是平面ABB1A1的法向量,
所以:$\left\{\begin{array}{l}\overrightarrow{m}•\overrightarrow{AB}=0\\ \overrightarrow{m}•\overrightarrow{{BB}_{1}}=0\end{array}\right.$,
$\left\{\begin{array}{l}2x+2y=0\\ y+\sqrt{3}z=0\end{array}\right.$
求得:$\overrightarrow{m}=(-\sqrt{3},\sqrt{3},-1)$,
由E(1,0,0)
求得:$\overrightarrow{{EC}_{1}}=(-1,2,\sqrt{3})$,
直线EC1与平面ABB1A1所成的角的正弦值
sinθ=cos$<\overrightarrow{EC},\overrightarrow{m}>$=$\left|\frac{\overrightarrow{{EC}_{1}}•\overrightarrow{m}}{\left|\overrightarrow{{EC}_{1}}\right|\left|\overrightarrow{m}\right|}\right|=\frac{\sqrt{42}}{14}$.


点评 本题考查的知识要点:线面垂直与面面垂直与线线垂直之间的转化,空间直角坐标系,法向量的应用,线面的夹角的应用,主要考查学生的空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在△ABC中,角A、B、C所对的边分别为a、b、c,下列结论正确序号有②④⑤
①若O为重心,则($\overrightarrow{OA}$+$\overrightarrow{OB}$)•$\overrightarrow{AB}$=($\overrightarrow{OB}$+$\overrightarrow{OC}$)•$\overrightarrow{BC}$=($\overrightarrow{OC}$+$\overrightarrow{OA}$)•$\overrightarrow{CA}$.
②若I为内心,则a$\overrightarrow{IA}$+b$\overrightarrow{IB}$+c$\overrightarrow{IC}$=$\overrightarrow{0}$
③若O为外心,则$\frac{\overrightarrow{OA}}{a}$+$\frac{\overrightarrow{OB}}{b}$+$\frac{\overrightarrow{OC}}{c}$=$\overrightarrow{0}$.
④若H为垂心,则$\overrightarrow{HA}$•$\overrightarrow{HB}$=$\overrightarrow{HB}$•$\overrightarrow{HC}$=$\overrightarrow{HC}$•$\overrightarrow{HA}$;
⑤若O为外心,H为垂心,则$\overrightarrow{OH}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.数字“2015”中,各位数字相加和为8,称该数为“如意四位数”,则用数字0,1,2,3,4,5组成的无重复数字且大于2015的“如意四位数”有(  )个.
A.21B.22C.23D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\frac{4sinθ-2cosθ}{3sinθ+5cosθ}$=$\frac{6}{11}$,求下列各式的值,
(1)$\frac{5co{s}^{2}θ}{si{n}^{2}θ+2sinθcosθ-3co{s}^{2}θ}$;
(2)1-4sinθcosθ+2cos2θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=$\frac{a+lnx}{x}$,若曲线f(x)在点(e,f(e))处的切线与直线e2x-y+e=0垂直(其中e为自然对数的底数).
(1)若f(x)在(m,m+1)上存在极值,求实数m的取值范围;
(2)求证:当x>1时,$\frac{f(x)}{e+1}$>$\frac{2{e}^{x-1}}{(x+1)(x{e}^{x}+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,四面体 ABCD的一条棱长为 x,其余棱长均为 1,记四面体 ABCD的体积为F(x),则函数F(x)的单调增区间是$(0,\frac{\sqrt{6}}{2}]$,;最大值为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=xlnx,g(x)=(-x2+ax-3)e2(a为实数).
(1)当a=5时,求函数y=g(x)在x=1处的切线方程;
(2)求f(x)在区间[t,t+2](t>0)上的最小值;
(3)若存在两不等实数x1,x2∈[$\frac{1}{e}$,e],使方程g(x)=2e2f(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.C是曲线y=$\sqrt{1-{x^2}}$(-1≤x≤0)上一点,CD垂直于y轴,D是垂足,点A的坐标是(-1,0).设∠CAO=θ(其中O表示原点),将AC+CD表示成关于θ的函数f(θ),则f(θ)=2cosθ-cos2θ,θ∈[$\frac{π}{4}$,$\frac{π}{2}$),f(θ)的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在极坐标系中,曲线C的方程为ρ2=$\frac{3}{1+2si{n}^{2}θ}$,点R(2$\sqrt{2}$,$\frac{π}{4}$).
(Ⅰ)以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,把曲线C的极坐标方程化为直角坐标方程,R点的极坐标化为直角坐标;
(Ⅱ)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形PQRS周长的最小值,及此时P点的直角坐标.

查看答案和解析>>

同步练习册答案