【题目】平面直角坐标系xOy中,过椭圆M:
(a>b>0)右焦点的直线x+y﹣
=0交M于A,B两点,P为AB的中点,且OP的斜率为
. (Ⅰ)求M的方程
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.
【答案】解:(Ⅰ)把右焦点(c,0)代入直线x+y﹣
=0得c+0﹣
=0,解得c=
. 设A(x1 , y1),B(x2 , y2),线段AB的中点P(x0 , y0),
则
,
,相减得
,
∴
,
∴
,又
=
,
∴
,即a2=2b2 .
联立得
,解得
,
∴M的方程为
.
(Ⅱ)∵CD⊥AB,∴可设直线CD的方程为y=x+t,
联立
,消去y得到3x2+4tx+2t2﹣6=0,
∵直线CD与椭圆有两个不同的交点,
∴△=16t2﹣12(2t2﹣6)=72﹣8t2>0,解﹣3<t<3(*).
设C(x3 , y3),D(x4 , y4),∴
,
.
∴|CD|=
=
=
.
联立
得到3x2﹣4
x=0,解得x=0或 ![]()
,
∴交点为A(0,
),B
,
∴|AB|=
=
.
∴S四边形ACBD=
=
=
,
∴当且仅当t=0时,四边形ACBD面积的最大值为
,满足(*).
∴四边形ACBD面积的最大值为
.![]()
【解析】(Ⅰ)把右焦点(c,0)代入直线可解得c.设A(x1 , y1),B(x2 , y2),线段AB的中点P(x0 , y0),利用“点差法”即可得到a,b的关系式,再与a2=b2+c2联立即可得到a,b,c.(Ⅱ)由CD⊥AB,可设直线CD的方程为y=x+t,与椭圆的方程联立得到根与系数的关系,即可得到弦长|CD|.把直线x+y﹣
=0与椭圆的方程联立得到根与系数的关系,即可得到弦长|AB|,利用S四边形ACBD=
即可得到关于t的表达式,利用二次函数的单调性即可得到其最大值.
科目:高中数学 来源: 题型:
【题目】矩形区域 ABCD 中,AB 长为 2 千米,BC 长为 1 千米,在 A 点和 C 点处各有一个通信基站,其覆盖范围均为方圆 1 千米,若在该矩形区域内随意选取一地点,则该地点无信号的概率为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知偶函数f(x)在[0,+∞)上是增函数,且f(1)=0,则满足f(log
x)>0的x的取值范围是( )
A.(0,+∞)
B.(0,
)∪(2,+∞)
C.(0,
)
D.(0,
)∪(1,2)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班有学生50人,其中男同学30人,用分层抽样的方法从该班抽取5人去参加某社区服务活动.
(1)求从该班男女同学在各抽取的人数;
(2)从抽取的5名同学中任选2名谈此活动的感受,求选出的2名同学中恰有1名男同学的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ABCD边长为1,从某时刻起,将线段AB,BC,CD,DA分别绕点A,B,C,D顺时针旋转相同角度α(0<α<
),若旋转后的四条线段所围成的封闭图形面积为
,则α=( ) ![]()
A.
或 ![]()
B.
或 ![]()
C.
或 ![]()
D.
或 ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班50人的一次竞赛成绩的频数分布如下:[60,70):3人,[70,80):16人,[80,90):24人,[90,100]:7人,利用各组区间中点值,可估计本次比赛该班的平均分为( )
A.56
B.68
C.78
D.82
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若圆的一条直径的两个端点分别是(﹣1,3)和(5,﹣5),则此圆的方程是( )
A.x2+y2+4x+2y﹣20=0
B.x2+y2﹣4x﹣2y﹣20=0
C.x2+y2﹣4x+2y+20=0
D.x2+y2﹣4x+2y﹣20=0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com