精英家教网 > 高中数学 > 题目详情
已知四棱锥P-ABCD中,底面ABCD为直角梯形,BC∥AD.∠BAD=90°,且PA=AB=BC=1,AD=2,PA⊥平面ABCD,E为AB的中点.
(Ⅰ)证明:PC⊥CD;
(Ⅱ)设F为PA上一点,且
AF
=
1
4
AP
,证明:EF∥平面PCD.
考点:直线与平面平行的判定
专题:空间位置关系与距离
分析:(Ⅰ)连结AC,根据PA⊥平面ABCD,推断出PA⊥CD,取AD中点G,连结CG,在直角梯形ABCD中∠BAD=90°,AB=BC=1,AD=2,BC∥AD,进而求得AG=GD=GC=1,CG⊥AD,推断出CD⊥AC,进而可知CD⊥平面PAC,最后利用线面垂直的性质推断出PC⊥CD.
(Ⅱ)取AG的中点H,连结BG,EH,FH,E为AB的中点,推断出EH∥BG,BC=DG=1,BC∥DG,判断出四边形BCDG为平行四边形,得出GC∥CD,根据已知
AF
=
1
4
AP
,AH=
1
4
AD,推断出FH∥PD,利用面面平行的判定定理判断出平面EFH∥平面PCD,进而可知EF∥平面PCD.
解答: 解:(Ⅰ)连结AC,
∵PA⊥平面ABCD,
∴PA⊥CD,
取AD中点G,连结CG,
在直角梯形ABCD中∠BAD=90°,AB=BC=1,AD=2,BC∥AD,
∴AG=GD=GC=1,CG⊥AD,
∴CD⊥AC,
∴CD⊥平面PAC,
∴PC⊥CD.


(Ⅱ)取AG的中点H,连结BG,EH,FH,
∵E为AB的中点,
∴EH∥BG,
又BC=DG=1,BC∥DG,
∴四边形BCDG为平行四边形,
∴GC∥CD,
AF
=
1
4
AP
,AH=
1
4
AD,
∴FH∥PD,
∴平面EFH∥平面PCD,
∴EF∥平面PCD.
点评:本题主要考查了直线与平面平行,垂直的性质及判定定理的应用.作为基础,要求学生能熟练掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

阅读如图的程序框图,则输出的S为(  )
A、6B、10C、14D、30

查看答案和解析>>

科目:高中数学 来源: 题型:

设数字1,2,3,4,5,6的一个排列为a1,a2,a3,a4,a5,a6,若对任意的ai(i=2,3,4,5,6)总有ak(k<i,k=1,2,3,4,5)满足|ai-ak|=1,则这样的排列共有(  )
A、36B、32C、28D、20

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,x,y∈R,且a2+b2=1,x2+y2=1,试证:|ax+by|≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an+1)}为等差数列,且a1=3,a2=7(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1
x
+
x2+
1
x2
+1
(x>0),数列数列{an}满足:a1=1,an+1=f(an),(n∈N*),Sn=a12+a22+…+an2,Tn=
1
a12
+
1
a22
+…+
1
an2

(1)求证:f(x)+
1
f(x)
=2(x+
1
x
);
(2)求Sn+Tn
(3)在数列{Sn+Tn}中是否存在不同的三项,使得此三项能成为某一三角形的三条边长?若能,请求出这三项;若不能请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令的赞成人数如下表:
月收入 [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 8 5 2 1
将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收入族”.
(Ⅰ)根据已知条件完成下面的2×2列联表,有多大的把握认为赞不赞成楼市限购令与收入高低有关?
非高收入族 高收入族 总计
赞成
不赞成
总计
(Ⅱ)现从月收入在[55,65)的人群中随机抽取两人,求所抽取的两人中至少一人赞成楼市限购令的概率.
附:X2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

P (X2≥K) 0.01 0.05 0.1
K 6.635 3.841 2.706

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,sin
∠ABC
2
=
3
3
,AB=2,点D在线段AC上,且AD=2DC,BD=
4
3
3
,则BC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在定义域R上的值不全为零,若函数f(x+1)的图象关于(1,0)对称,函数f(x+3)的图象关于直线x=1对称,则下列式子中错误的是(  )
A、f(-x)=f(x)
B、f(x-2)=f(x+6)
C、f(-2+x)+f(-2-x)=0
D、f(3+x)+f(3-x)=0

查看答案和解析>>

同步练习册答案