精英家教网 > 高中数学 > 题目详情
已知函数f(x)在定义域R上的值不全为零,若函数f(x+1)的图象关于(1,0)对称,函数f(x+3)的图象关于直线x=1对称,则下列式子中错误的是(  )
A、f(-x)=f(x)
B、f(x-2)=f(x+6)
C、f(-2+x)+f(-2-x)=0
D、f(3+x)+f(3-x)=0
考点:函数的图象与图象变化
专题:函数的性质及应用
分析:由已知条件求得f(4-x)=-f(x) …①、f(x+4)=f(4-x) …②、f(x+8)=f(x) …③.再利用这3个结论检验各个选项是否正确,从而得出结论.
解答: 解:∵函数f(x+1)的图象关于(1,0)对称,
∴函数f(x)的图象关于(2,0)对称,
令F(x)=f(x+1),则F(x)=-F(2-x),
故有 f(3-x)=-f(x+1),f(4-x)=-f(x) …①.
令G(x)=f(3-x),
∵其图象关于直线x=1对称,∴G(2+x)=G(-x),
即f(x+5)=f(3-x),
∴f(x+4)=f(4-x)  …②.
由①②得,f(x+4)=-f(x),
∴f(x+8)=f(x)  …③.
∴f(-x)=f(8-x)=f(4+4-x),
由②得 f[4+(4-x)]=f[4-(4-x)]=f(x),
∴f(-x)=f(x),∴A对.
由③得 f(x-2+8)=f(x-2),即 f(x-2)=f(x+6),∴B对.
由①得,f(2-x)+f(2+x)=0,又f(-x)=f(x),
∴f(-2-x)+f(-2+x)=f(2-x)+f(2+x)=0,∴C对.
若f(x+3)+f(3-x)=0,则f(6+x)=-f(x),∴f(12+x)=f(x),
由③可得f(12+x)=f(4+x),又f(x+4)=-f(x),∴f(x)=-f(x),∴f(x)=0,与题意矛盾,∴D错,
故选:D.
点评:本题主要考查函数的奇偶性、单调性、周期性的应用,函数的图象及图象变换.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知四棱锥P-ABCD中,底面ABCD为直角梯形,BC∥AD.∠BAD=90°,且PA=AB=BC=1,AD=2,PA⊥平面ABCD,E为AB的中点.
(Ⅰ)证明:PC⊥CD;
(Ⅱ)设F为PA上一点,且
AF
=
1
4
AP
,证明:EF∥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆O的直径AB=2,弦AC=1,D为AC的中点,BD的延长线与圆O交于点E,则弦AE=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标平面上,
OA
=(1,4),
OB
=(-3,1),且
OA
OB
在直线l的方向向量上的投影的长度相等,则直线l的斜率为(  )
A、-
1
4
B、
2
5
C、
2
5
或-
4
3
D、
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足z•(1-i)=2-i(其中i是虚数单位),则z=(  )
A、
3
2
+
1
2
i
B、
1
2
-
3
2
i
C、
1
2
+
3
2
i
D、
3
2
-
1
2
i

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z满足方程
1+2i
z-3
=-i(i为虚数单位),则复数z在复平面内对应的点在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线y=|
a
|x+1与直线y=|
b
|x平行,
a
b
为非零向量,则必有(  )
A、
a
b
B、
a
b
C、(
a
+
b
)⊥(
a
-
b
D、(
a
+
b
)∥(
a
-
b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p、q,则“p且q为假”是“p或q为真”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知线性约束条件
x-y+1≤0
x≥1
ax+y≤2(a∈R)
构成一个三角形区域D,且线性目标函数z=2x+3y在D内取得最大值13,则实数a的值是
 

查看答案和解析>>

同步练习册答案