精英家教网 > 高中数学 > 题目详情

【题目】如图,是以为直径的圆上一点,,等腰梯形所在的平面垂直于⊙所在的平面,且.

1)求所成的角;

2)若异面直线所成的角为,求二面角的余弦值.

【答案】130°(2

【解析】

1)根据可知,所成角即为(或其补角),根据可得结果;

2)取弧的中点的中点,以为原点,以所在直线为轴,以所在直线为轴,以所在直线为轴,建立空间直角坐标系:再利用二面角的两个半平面的法向量可求得结果.

1

所成角即为(或其补角),

.

所成角为30°.

2)取弧的中点的中点,以为原点,以所在直线为轴,以所在直线为轴,以所在直线为轴,建立如图所示的空间直角坐标系:

的长为,则

所以

所以

设平面的一个法向量

,得

.

显然平面的一个法向量,设二面角所成角的平面角为

∴二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,长轴长为4,且过点.

1)求椭圆C的方程;

2)过的直线l交椭圆C两点,过Ax轴的垂线交椭圆C与另一点QQ不与重合).的外心为G,求证为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年是我国垃圾分类逐步凸显效果关键的一年.在国家高度重视,重拳出击的前提下,高强度、高频率的宣传教育能有效缩短我国生活垃圾分类走入世界前列所需的时间,打好垃圾分类这场持久战全民战”.某市做了一项调查,在一所城市中学和一所县城中学随机各抽取15名学生,对垃圾分类知识进行问答,满分为100分,他们所得成绩如下:

城市中学学生成绩分别为:73 71 83 86 92 70 88 93 73 97 87 88 74 86 85

县城中学学生成绩分别为:60 64 71 91 60 76 72 85 81 72 62 74 73 63 72

1)根据上述两组数据在图中完成两所中学学生成绩的茎叶图,并通过茎叶图比较两所中学学生成绩的平均分及分散程度;(不要求计算出具体值,给出结论即可)

2)记这30名学生成绩80分以上为良好,80分以下为一般,完善表格,并判断是否有99%的把握认为该城市中学和县城中学的学生在了解垃圾分类知识上有差异?(结果保留三位小数)

学生成绩

良好

一般

合计

城市中学学生

县城中学学生

合计

附:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的左、右焦点分别为,离心率为,点P是椭圆C上的一个动点,且面积的最大值为.

1)求椭圆C的方程;

2)椭圆Cx轴交于AB两点,直线与直线l分别交于点MN,试探究以为直径的圆是否恒过定点,若是,求出所有定点的坐标:若否,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,经过点且斜率为的直线相交于两点,与轴相交于点.

1)若,且恰为线段的中点,求证:线段的垂直平分线经过定点;

2)若,设分别为 的左、右顶点,直线相交于点.当点异于时,是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)求函数的单调区间;

2)若对任意,任意,不等式恒成立时最大的记为,当时,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】菱形中,平面

1)证明:直线平面

2)求二面角的正弦值;

3)线段上是否存在点使得直线与平面所成角的正弦值为?若存在,求;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,左、右焦点分别为,离心率为是椭圆上的一个动点(不与左、右顶点重合),且的周长为6,点关于原点的对称点为,直线交于点.

1)求椭圆方程;

2)若直线与椭圆交于另一点,且,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,菱形与正方形所在平面相交于.

1)求作平面与平面的交线,并说明理由;

2)若垂直且相等,求二面角的余弦值.

查看答案和解析>>

同步练习册答案