精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,长轴长为4,且过点.

1)求椭圆C的方程;

2)过的直线l交椭圆C两点,过Ax轴的垂线交椭圆C与另一点QQ不与重合).的外心为G,求证为定值.

【答案】12)证明见解析

【解析】

1)根据长轴及椭圆过点即可求出;

2)由题意设直线,联立椭圆方程可求,求出外接圆圆心,计算,化简即可证明为定值.

1)由题意知

P点坐标代入椭圆方程,解得

所以椭圆方程为.

2)由题意知,直线的斜率存在,且不为0,设直线

代入椭圆方程得.

,则

所以的中点坐标为

所以.

因为G的外心,所以G是线段的垂直平分线与线段的垂直平分线的交点,

的垂直平分线方程为

,得,即,所以

所以,所以为定值,定值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在单位圆Ox2+y21上任取一点Pxy),圆Ox轴正向的交点是A,设将OA绕原点O旋转到OP所成的角为θ,记xy关于θ的表达式分别为xfθ),ygθ),则下列说法正确的是(  )

A.xfθ)是偶函数,ygθ)是奇函数

B.xfθ)在为增函数,ygθ)在为减函数

C.fθ+gθ≥1对于恒成立

D.函数t2fθ+g2θ)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点,直线,过动点于点的平分线交轴于点,且,记动点的轨迹为曲线

1)求曲线的方程;

2)过点作两条直线,分别交曲线两点(异于点).当直线的斜率之和为2时,直线是否恒过定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.

1)求椭圆C的标准方程;

2)设F为椭圆C的左焦点,T为直线上任意一点,过FTF的垂线交椭圆C于点PQ.

i)证明:OT平分线段PQ(其中O为坐标原点);

ii)当最小时,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校开展学生社会法治服务项目,共设置了文明交通,社区服务,环保宣传和中国传统文化宣讲四个项目,现有该校的甲、乙、丙、丁4名学生,每名学生必须且只能选择1项.

1)求恰有2个项目没有被这4名学生选择的概率;

2)求环保宣传被这4名学生选择的人数的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个不同的极值点.

1)求的取值范围.

2)求的极大值与极小值之和的取值范围.

3)若,则是否有最小值?若有,求出最小值;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线上的一点,为抛物线上异于点的两点,且直线的斜率与直线的斜率互为相反数.

1)求直线的斜率;

2)设直线过点并交抛物线于两点,且,直线轴交于点,试探究的夹角是否为定值,若是则求出定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点AB的坐标分别是(0),(0),动点Mxy)满足直线AMBM的斜率之积为﹣3,记M的轨迹为曲线E

1)求曲线E的方程;

2)直线ykx+m与曲线E相交于PQ两点,若曲线E上存在点R,使得四边形OPRQ为平行四边形(其中O为坐标原点),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是以为直径的圆上一点,,等腰梯形所在的平面垂直于⊙所在的平面,且.

1)求所成的角;

2)若异面直线所成的角为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案