精英家教网 > 高中数学 > 题目详情
11.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为(1,0),离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)过点P(0,3)作一条与椭圆Γ相交的直线l,设交点为A,B,若点A,B均位于y轴的右侧,且$\overrightarrow{BA}$=$\overrightarrow{AP}$,求x轴上满足|QP|=|QB|的点Q的坐标.

分析 (Ⅰ)由题意可得c=1,运用椭圆的离心率公式可得a,再由a,b,c的关系可得b,进而得到椭圆的方程;
(Ⅱ)设直线l的方程为y=kx+3,联立方程$\left\{\begin{array}{l}{y=kx+3}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,得(4k2+3)x2+24kx+24=0,由此利用韦达定理,结合已知条件能求出点Q的坐标.

解答 解:(Ⅰ)由题意可得c=1,e=$\frac{c}{a}$=$\frac{1}{2}$,
可得a=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$,
即有椭圆方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(Ⅱ)设直线l的方程为y=kx+3,k<0,
A(x1,y1),B(x2,y2),(x1>0,x2>0),
∵$\overrightarrow{BA}$=$\overrightarrow{AP}$,P(0,3),∴x2=2x1,①
联立方程组$\left\{\begin{array}{l}{y=kx+3}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,
得(4k2+3)x2+24kx+24=0,(*)
∴x1+x2=$\frac{-24k}{3+4{k}^{2}}$,②,x1x2=$\frac{24}{3+4{k}^{2}}$,③
由①得x1x2=$\frac{2}{9}$(x1+x22
又由②③得($\frac{-8k}{3+4{k}^{2}}$)2=$\frac{12}{3+4{k}^{2}}$,
∴k2=$\frac{9}{4}$,解得k=±$\frac{3}{2}$,
∵x1>0,x2>0,∴x1+x2=$\frac{-24k}{3+4{k}^{2}}$>0,
可得k<0,∴k=-$\frac{3}{2}$,
当k=-$\frac{3}{2}$时,方程(*)化为x2-3x+2=0,
解得x1=1,x2=2,∴B(2,0),A(1,$\frac{3}{2}$),
设Q(m,0),∵|QP|=|QB|,
∴m2+9=(m-2)2,解得m=-$\frac{5}{4}$,
∴Q(-$\frac{5}{4}$,0).

点评 本题考查椭圆方程的求法,考查点的坐标的求法,解题时要认真审题,注意函数与方程思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(0,1),离心率为 $\frac{\sqrt{3}}{2}$,点O为坐标原点.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)设不与坐标轴平行的直线l1:y=kx+m与椭圆交于A,B两点,与x轴交于点P,设线段AB中点为M.
  (i)证明:直线OM的斜率与直线l1的斜率之积为定值;
  (ii)如图,当m=-k时,过点M作垂直于l1的直线l2,交x轴于点Q,求$\frac{|AB|}{|PQ|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.两直线3x+4y-9=0和6x+my+2=0平行,则它们之间的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,△ABO三边上的点C、D、E都在⊙O上,已知AB∥DE,AC=CB.
(l)求证:直线AB与⊙O相切;
(2)若AD=2,且tan∠ACD=$\frac{1}{3}$,求AO的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F2(1,0),点H(3,0)在椭圆上
(1)求椭圆的方程;
(2)点M在圆x2+y2=b2上,且M在第一象限,过M作圆x2+y2=b2的切线交椭圆于P,Q两点,求证:△PF2Q的周长是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某个几何体的三视图如图所示,则该几何体的体积是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.以下几个命题中:其中真命题的序号为③④(写出所有真命题的序号)
①设A,B为两个定点,k为非零常数,|$\overrightarrow{PA}$|-|$\overrightarrow{PB}$|=k,则动点P的轨迹为双曲线;
②平面内,到定点(2,1)的距离与到定直线3x+4y-10=0的距离相等的点的轨迹是抛物线;<
③双曲线$\frac{{x}^{2}}{25}-\frac{{y}^{2}}{9}=1$与椭圆$\frac{{x}^{2}}{35}+{y}^{2}=1$有相同的焦点;
④若方程2x2-5x+a=0的两根可分别作为椭圆和双曲线的离心率,则0<a<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示的平面图形是边长为8的正三角形,沿三边中点连线向同一方向折成一个多面体.
(1)请画出沿虚线折起拼接后的多面体,并写出它的名称;
(2)求该多面体侧面与底面所成二面角的余弦值;
(3)求该多面体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在正方体ABCD-A1B1C1D1中,若棱长AB=3,则点B到平面ACD1的距离为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案