分析 (1)连结OC,OC⊥AB,推导出OA=OB,OC⊥AB,由此能证明直线AB与⊙O相切.
(2)延长DO交⊙O于点F,连结FC,由弦切角定理得△ACD∽△AFC,从而$\frac{CD}{PC}$=$\frac{1}{3}$,由此能求出AO的长.
解答
证明:(1)∵AB∥DE,∴$\frac{OA}{OD}=\frac{OB}{OE}$,又OD=OE,∴OA=OB,
如图,连结OC,∵AC=CB,∴OC⊥AB,
又点C在⊙O上,∴直线AB与⊙O相切.
解:(2)如图,延长DO交⊙O于点F,连结FC,
由(1)知AB是⊙O的切线,∴弦切角∠ACD=∠F,
∴△ACD∽△AFC,∴tan∠ACD=tan∠F=$\frac{1}{3}$,
又∠DCF=90°,∴$\frac{CD}{PC}$=$\frac{1}{3}$,
∵AD=2,∴AC=6,
又AC2=AD•AF,∴2(2+2r)=62,∴r=8,
∴AO=2+8=10.
点评 本题考查线与圆相切的证明,考查线段长的求法,是中档题,解题时要认真审题,注意圆的性质的简单运用.
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{7}{9}$ | B. | $\frac{7}{9}$ | C. | $-\frac{8}{9}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{16}+\frac{y^2}{9}=1$ | B. | $\frac{x^2}{64}+\frac{y^2}{57}=1$ | C. | $\frac{x^2}{16}-\frac{y^2}{9}=1$ | D. | $\frac{x^2}{64}-\frac{y^2}{57}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,x2-2<0 | B. | ?x∈R,x2-2≤0 | ||
| C. | ?x0∈R,x${\;}_{0}^{2}$-2<0 | D. | ?x0∈R,x${\;}_{0}^{2}$-2≤0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com