精英家教网 > 高中数学 > 题目详情
3.以下几个命题中:其中真命题的序号为③④(写出所有真命题的序号)
①设A,B为两个定点,k为非零常数,|$\overrightarrow{PA}$|-|$\overrightarrow{PB}$|=k,则动点P的轨迹为双曲线;
②平面内,到定点(2,1)的距离与到定直线3x+4y-10=0的距离相等的点的轨迹是抛物线;<
③双曲线$\frac{{x}^{2}}{25}-\frac{{y}^{2}}{9}=1$与椭圆$\frac{{x}^{2}}{35}+{y}^{2}=1$有相同的焦点;
④若方程2x2-5x+a=0的两根可分别作为椭圆和双曲线的离心率,则0<a<3.

分析 ①根据双曲线的定义知①不正确;
②说明点(2,1)在直线3x+4y-10=0上,不满足抛物线的定义;
③双曲线的离心率大于1,椭圆的离心率小于1大于0,即可判定;
④求出双曲线的焦点与椭圆的焦点,即可判定.

解答 解:①平面内与两个定点F1,F2的距离的差的绝对值等于常数k(k<|F1F2|)的点的轨迹叫做双曲线,当0<k<|AB|时是双曲线的一支,当k=|AB|时,表示射线,∴①不正确;
②在平面内,点(2,1)在直线3x+4y-10=0上,
∴到定点(2,1)的距离与到定直线3x+4y-10=0的距离相等的点的轨迹不是抛物线,∴②不正确;
③双曲线$\frac{{x}^{2}}{25}-\frac{{y}^{2}}{9}=1$与椭圆$\frac{{x}^{2}}{35}+{y}^{2}=1$的焦点都是(±$\sqrt{34}$,0),有相同的焦点,正确;
④正确方程2x2-5x+a=0的可分别作为椭圆和双曲线的离心率,则$\left\{\begin{array}{l}{a>0}\\{2-5+a<0}\end{array}\right.$,∴0<a<3,正确;
故答案为:③④.

点评 本题通过命题真假的判定考查椭圆、双曲线抛物线的定义、性质和曲线的方程与方程的曲线等问题,是综合题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=1-2{cos^2}(x+\frac{π}{4})$,下列说法正确的是(  )
A.f(x)是最小正周期为π的奇函数B.f(x)是最小正周期为π的偶函数
C.f(x)是最小正周期为$\frac{π}{2}$的偶函数D.f(x)是最小正周期为$\frac{π}{2}$的奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设P是椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上的一点,F1,F2是该椭圆的两个焦点,且∠F1PF2=$\frac{π}{3}$,则△F1PF2的面积为3$\sqrt{3}$,△F1PF2内切圆半径为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为(1,0),离心率为$\frac{1}{2}$.
(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)过点P(0,3)作一条与椭圆Γ相交的直线l,设交点为A,B,若点A,B均位于y轴的右侧,且$\overrightarrow{BA}$=$\overrightarrow{AP}$,求x轴上满足|QP|=|QB|的点Q的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图是一个几何体的三视图,其俯视图是边长为3的正三角形,则该几何体的表面积为(  )
A.36B.36$+\frac{9\sqrt{3}}{4}$C.36$+\frac{9\sqrt{3}}{2}$D.18$+\frac{9\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}中,a1=2,$\frac{a_{n+1}-1}{a_n-1}$=3,若an≤100,则n的最大值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C1:x2+y2=9与圆C2:(x-3)2+(y-4)2=r2(r>0)相外切.
(1)若圆C2关于直线l:$\frac{ax}{9}$-$\frac{by}{12}$=1对称,求由点M(a,b)向圆C2所作的切线长的最小值;
(2)若直线l1过点A(1,0),与圆C2相交于P、Q两点.且S${\;}_{△{C}_{2}PQ}$=2求此时直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.甲、乙两人下棋,两人和棋的概率是$\frac{1}{2}$,乙获胜的概率是$\frac{1}{3}$,则乙不输的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.400辆汽车通过某公路时,时速的频率分布直方图如图所示,则时速在[60,80)的汽车大约有(  )
A.120辆B.140辆C.160辆D.240辆

查看答案和解析>>

同步练习册答案