精英家教网 > 高中数学 > 题目详情
20.设直线y=2x-4与抛物线y2=4x交于A,B两点.
(1)求抛物线的焦点坐标和准线方程;
(2)求A,B两点的坐标,并求出线段AB的长.

分析 (1)由题意可知抛物线的焦点在x轴上,开口向右,且p=2,由焦点坐标和准线方程即可得到所求;
(2)联立直线方程和抛物线方程,消去y,解方程可得x,进而得到交点的纵坐标,再由两点的距离公式计算即可得到.

解答 解:(1)由题意可知抛物线的焦点在x轴上,开口向右,
即有2p=4,解得p=2,
故焦点坐标为(1,0),准线为x=-1;
(2)由$\left\{\begin{array}{l}{y^2}=4x\\ y=2x-4\end{array}\right.$,消去y,得x2-5x+4=0,
解出x1=1,x2=4,
于是,y1=-2,y2=4,
所以A,B两点的坐标分别为A(4,4),B(1,-2),
则有线段AB的长:$|AB|=\sqrt{{{(4-1)}^2}+{{(4+2)}^2}}=3\sqrt{5}$.

点评 本题考查抛物线的方程和性质,主要考查直线方程和抛物线方程联立,求交点,运用两点的距离公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)的对应关系如表所示,数列{an}满足a1=3,an+1=f(an),则a4=1,a2015=3.
x123
f(x)321

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆x2+y2=r2(r>0)与抛物线y2=2$\sqrt{2}$x交于A、B两点,O是坐标原点,若OA⊥OB,则r的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,已知直线l:y=kx-2与抛物线C:x2=-2py(p>0)交于A,B两点,线段AB的中点坐标为(-2,-6).
(Ⅰ)求直线l和抛物线C的方程;
(Ⅱ)求线段AB的长;
(Ⅲ)抛物线上一动点P从A到B运动时,求△ABP面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线G的顶点在原点,焦点F为圆(x-1)2+y2=1的圆心.设过点F的直线与抛物线G及圆F依次交于如图中所示的A,B,C,D四点.
(Ⅰ)求抛物线G的标准方程;
(Ⅱ)证明:|AB|•|CD|为定值;
(Ⅲ)若已知|AD|=a,试用a表示△AOD的面积S△AOD

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.当水位上涨,水面宽为2米时,拱顶到水面的距离为0.5米.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,在棱长为1正四面体S-ABC,O是四面体的中心,平面PQR∥平面ABC,设SP=x(0≤x≤1),三棱锥O-PQR的体积为V=f(x),其导函数y=f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若抛物线y2=2x上有两点A,B到焦点的距离之和为6,则线段AB的中点到y轴的距离为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在直角坐标系xOy中,曲线C1和C2的参数方程分别为$\left\{\begin{array}{l}{x=cosθ+sinθ}\\{y=cosθ-sinθ}\end{array}\right.$(θ为参数)和$\left\{\begin{array}{l}{x=2-t}\\{y=t}\end{array}\right.$(t为参数).以原点O为极点,x轴正半轴为极轴,建立极坐标系,则曲线C1与C2的交点的极坐标为$(\sqrt{2},\frac{π}{4})$.

查看答案和解析>>

同步练习册答案