精英家教网 > 高中数学 > 题目详情
8.如图,已知直线l:y=kx-2与抛物线C:x2=-2py(p>0)交于A,B两点,线段AB的中点坐标为(-2,-6).
(Ⅰ)求直线l和抛物线C的方程;
(Ⅱ)求线段AB的长;
(Ⅲ)抛物线上一动点P从A到B运动时,求△ABP面积最大值.

分析 (Ⅰ)代入点(-2,-6),求得k=2,联立直线方程和抛物线方程,运用韦达定理,由题意可得p=1,即可得到抛物线的方程;
(Ⅱ)运用弦长公式:|AB|=$\sqrt{1+{k}^{2}}$•|x1-x2|,计算即可得到;
(Ⅲ)当点P到直线AB的距离h最大时,△ABP的面积最大.设与AB平行的直线l'的方程为y=2x+m,联立抛物线方程,由判别式为0,可得m=2,由两平行直线的距离公式即可求得h的最大值,计算可得面积的最大值.

解答 解:(Ⅰ)由已知,点(-2,-6)在直线l上,
所以-6=-2k-2,解得k=2,
所以直线l的方程为y=2x-2.     
设A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{x^2}=-2py\;,\;\\ y=2x-2\;,\;\end{array}\right.$消去y,得x2+4px-4p=0,
所以x1+x2=-4p,x1•x2=-4p.
所以-4p=-4,解得p=1.
所以抛物线的方程为x2=-2y.             
(Ⅱ)$|AB|\;=\sqrt{1+{k^2}}|{x_1}-{x_2}|\;=\sqrt{1+{k^2}}\sqrt{{{({x_1}+{x_2})}^2}-4{x_1}{x_2}}=\sqrt{5}•\sqrt{32}=4\sqrt{10}$.    
(Ⅲ)当点P到直线AB的距离h最大时,△ABP的面积最大.
设与AB平行的直线l'的方程为y=2x+m,
由$\left\{\begin{array}{l}{x^2}=-2py\;,\;\\ y=2x+m\;,\;\end{array}\right.$消去y,得x2+4x+2m=0,
由△=0,解得m=2.
所以l'的方程为y=2x+2.              
所以${h_{max}}=\frac{|2-(-2)|}{{\sqrt{{2^2}+{1^2}}}}=\frac{{4\sqrt{5}}}{5}$.
所以△ABP面积的最大值为${S_{max}}=\frac{1}{2}×{h_{max}}×|AB|\;=\;\frac{1}{2}×4\sqrt{10}×\frac{{4\sqrt{5}}}{5}=8\sqrt{2}$.

点评 本题考查抛物线的方程的性质,主要考查直线方程和抛物线方程联立,运用韦达定理和弦长公式,同时考查点到直线的距离公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边长分别为a,b,c,且(2b-c)cosA=acosC.
(Ⅰ)求角A的大小;
(Ⅱ)若a=3,b=2c,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线l1:2x-y+c=0(c>0)与直线l2:4x-2y+4=0的距离为$\sqrt{5}$,则c=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的通项公式an=n2-7n-8.
(1)数列中有多少项为负数?
(2)数列{an}是否有最小项?若有,求出其最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知正三角形的一个顶点位于抛物线y2=2px(p>0)的焦点,另外两个顶点在抛物线上,那么满足条件的正三角形的个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点F为抛物线C:y2=2px(p>0)的焦点,M(4,t)为抛物线C上的点,且|MF|=5,则抛物线C的方程为(  )
A.y2=xB.y2=2xC.y2=4xD.y2=8x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设直线y=2x-4与抛物线y2=4x交于A,B两点.
(1)求抛物线的焦点坐标和准线方程;
(2)求A,B两点的坐标,并求出线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过抛物线y2=4x的焦点且斜率为1的直线交该抛物线于A、B两点,则|AB|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设sinα是sinθ,cosθ的等差中项,sinβ是sinθ,cosθ的等比中项,求证:cos4β-4cos4α=3.

查看答案和解析>>

同步练习册答案