【题目】设A={x|x2-2x=0},B={x|x2-2ax+a2-a=0}.
(1)若A∩B=B,求a的取值范围;
(2)若A∪B=B,求a的值.
【答案】(1){a|a≤0或a=1}.(2)a=1.
【解析】 试题分析:(1)先求A={0,2},再根据A∩B=B,转化为BA,最后根据子集,分类讨论求a的取值范围;(2)根据A∪B=B,得AB,再根据方程根与集合元素关系求a的值.
试题解析:由x2-2x=0,得x=0或x=2.
所以A={0,2}.
(1)因为A∩B=B,所以BA,B=,{0},{2},{0,2}.
当B=时,Δ=4a2-4(a2-a)=4a<0,
所以a<0.
当B={0}或{2}时,
则a=0,
或无解,
所以a=0,B={0,2},
则a=1,
综上,a的取值范围为{a|a≤0或a=1}.
(2)因为A∪B=B,所以AB,
所以B={0,2},所以a=1.
点睛: 防范空集.在解决有关等集合问题时,往往忽略空集的情况,一定先考虑是否成立,以防漏解.
科目:高中数学 来源: 题型:
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本题满分12分)为了解某校学生暑期参加体育锻炼的情况,对某班M名学生暑期参加体育锻炼的次数进行了统计,得到如下的频率分布表与直方图:
组别 | 锻炼次数 | 频数(人) | 频率 |
1 | 2 | 0.04 | |
2 | 11 | 0.22 | |
3 | 16 | ||
4 | 15 | 0.30 | |
5 | |||
6 | 2 | 0.04 | |
[ | 合计 | 1.00 |
(1)求频率分布表中、、及频率分布直方图中的值;
(2)求参加锻炼次数的众数(直接写出答案,不要求计算过程);
(3)若参加锻炼次数不少于18次为及格,估计这次体育锻炼的及格率。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,△ABC的三个内角为A,B,C,m=(sin B+sin C,0),n=(0,sin A)且
|m|2-|n|2=sin Bsin C.
(1)求角A的大小
(2)求sin B+sin C的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大。某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户按年龄分组进行访谈,统计结果如下表.
组号 | 年龄 | 访谈人数 | 愿意使用 |
1 | [20,30) | 5 | 5 |
2 | [30.40) | 10 | 10 |
3 | [40.50) | 15 | 12 |
4 | [50.60) | 14 | 8 |
5 | [60,70) | 6 | 2 |
(1)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,则各组应分别抽取多少人?
(2)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.
(3)按以上统计数据填写下面2×2列联表,并判断以50岁为分界点,能否在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关;
年龄不低于50岁的人数 | 年龄低于50岁的人数 | 合计 | |||||
愿意使用的人数 | |||||||
不愿意使用的人数 | |||||||
合计 |
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,且过点.
(Ⅰ)求椭圆的方程.
(Ⅱ)若, 是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线的斜率是否为定值?若是,求出该值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx- (1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在上的奇函数,且当时, .
(1)求函数的解析式;
(2)现已画出函数在轴左侧的图象,如图所示,请补全完整函数的图象;
(3)根据(2)中画出的函数图像,直接写出函数的单调区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com