| A. | 4 | B. | 3 | C. | 1 | D. | 0 |
分析 利用奇偶性求解f(x)解析式
构造f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$,g(x)=x,
画出图象,利用交点个数即可判断F(x)零点个数.
解答 解:∵在R上的奇函数f(x),当x≥0时,f(x)=-x2+2x,
∴当x<0时,f(x)=-f(-x)=-[-(-x)2+2(-x)]=x2+2x,
∴f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$,
g(x)=x,![]()
根据图形可判断:f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$,与g(x)=x,有3个交点,
即可得出函数F(x)=f(x)-x零点个数为3,
故选:B.
点评 本题考查了复杂函数的零点的判断问题,构函数转化为交点 的问题求解,数形结合的思想的运用,关键是画出图象.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| PM 2.5日均值(微克/立方米) | [25,35] | (35,45] | (45,55] | (55,65] | (65,75] | (75,85] |
| 频数 | 3 | 1 | 1 | 1 | 1 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15 | B. | 14 | C. | 12 | D. | 8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com