ÒÑ֪˫ÇúÏß
x2
9
-
y2
7
=1ÓëÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©ÓÐÏàͬµÄ½¹µã£¬µãA£¬B·Ö±ðÊÇÍÖÔ²×óÓÒ¶¥µã£¬ÈôÍÖÔ²¹ýµãD£¨
3
2
£¬
5
3
2
£©£®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©ÒÑÖªFÊÇÍÖÔ²µÄÓÒ½¹µã£¬ÒÔAFΪֱ¾¶µÄÔ²¼ÇΪԲC£¬¹ýDµãÒýÔ²CµÄÇÐÏߣ¬ÊÔÇóÇÐÏß·½³Ì£»
£¨3£©ÉèMΪÍÖÔ²ÓÒ×¼ÏßÉÏ×Ý×ø±ê²»Îª0µÄµã£¬N£¨x0£¬y0£©ÊÇÔ²CÉϵÄÈÎÒâÒ»µã£¬ÊÇ·ñ´æÔÚ¶¨µãP£¬Ê¹µÃMN/PNµÈÓÚ³£Êý2£¬Èô´æÔÚ£¬Çó³ö¶¨µãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺¼ÆËãÌâ,Ô²×¶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÌâÒâÒ×Öªc=4£¬¹Ê¿ÉµÃ
a2=b2+c2
c=4
9
4a2
+
75
4b2
=1
£¬´Ó¶ø½âÍÖÔ²µÄ·½³Ì£»
£¨2£©Ð´³öF£¨4£¬0£©£¬A£¨-6£¬0£©£¬Ô²CµÄ·½³ÌΪ£º£¨x+1£©2+y2=25£¬Ò×ÖªµãD £¨
3
2
£¬
5
3
2
£©ÔÚÔ²CÉÏ£¬´Ó¶øÇóÇÐÏß·½³Ì£»
£¨3£©ÍÖÔ²ÓÒ×¼Ïß·½³ÌΪx=
a2
c
=9£¬¹ÊM£¨9£¬d£©£¬N£¨-1+5cos¦Á£¬5sin¦Á£©£¬P£¨m£¬n£©£»ÔòÓÉ
MN
PN
=2µÃ£¨10-5cos¦Á£©2+£¨5sin¦Á-d£©2=4[£¨-m-1+5cos¦Á£©2+£¨5sin¦Á-n£©2]£¬»¯¼ò¿ÉµÃ
40(m+1)-100=0
40n-10d=0
d2+25-4(m+1)2-4n2=0
£¬´Ó¶ø½â³öm£¬n£¬d£®
½â´ð£º ½â£º£¨1£©ÓÉÌâÒ⣬˫ÇúÏß
x2
9
-
y2
7
=1µÄ×óÓÒ½¹µãΪ£¨¡À4£¬0£©£¬
¹Êc=4£¬
Ôò¿ÉµÃ
a2=b2+c2
c=4
9
4a2
+
75
4b2
=1
£¬
½âµÃ£¬a2=36£¬b2=20£»
¹ÊÍÖÔ²·½³ÌΪ£º
x2
36
+
y2
20
=1£»
£¨2£©F£¨4£¬0£©£¬A£¨-6£¬0£©£¬
¹ÊÔ²CµÄ·½³ÌΪ£º£¨x+1£©2+y2=25£¬
Ò×ÖªµãD £¨
3
2
£¬
5
3
2
£©ÔÚÔ²CÉÏ£¬
kCD=
5
2
3
3
2
+1
=
3
£¬
¹ÊÇÐÏßµÄбÂÊk=-
3
3
£¬
¹ÊÇÐÏß·½³ÌΪy-
5
3
2
=-
3
3
£¨x-
3
2
£©£¬
»¯¼òµÃ£¬x+
3
y-9=0£»
£¨3£©ÍÖÔ²ÓÒ×¼Ïß·½³ÌΪx=
a2
c
=9£¬
¹ÊM£¨9£¬d£©£¬N£¨-1+5cos¦Á£¬5sin¦Á£©£¬P£¨m£¬n£©£»
ÔòÓÉ
MN
PN
=2µÃ£¬
£¨10-5cos¦Á£©2+£¨5sin¦Á-d£©2=4[£¨-m-1+5cos¦Á£©2+£¨5sin¦Á-n£©2]£¬
»¯¼ò¿ÉµÃ£¨40£¨m+1£©-100£©cos¦Á+£¨40n-10d£©sin¦Á+d2+25-4£¨m+1£©2-4n2=0£¬
Ôò
40(m+1)-100=0
40n-10d=0
d2+25-4(m+1)2-4n2=0
£¬
½âµÃ£¬m=
3
2
£¬n=d=0£»
ÕâÓëÌâÒâMΪÍÖÔ²ÓÒ×¼ÏßÉÏ×Ý×ø±ê²»Îª0µÄµãÏàì¶Ü£¬
¹Ê¼ÙÉè²»³ÉÁ¢£¬
¹Ê²»´æÔÚ£®
µãÆÀ£º±¾Ì⿼²éÁËÔ²×¶ÇúÏߵϝ¼òÓëÓ¦Ó㬻¯¼òºÜÀ§ÄÑ£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

x£¼
3
2
£¬Çóy=2x+
4
2x-3
µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÆ½ÃæÏòÁ¿
a
=£¨2m+1£¬3£©
b£¬
=£¨2£¬m£©£¬ÇÒ
a
¡Î
b
£¬ÔòʵÊýmµÄÖµµÈÓÚ£¨¡¡¡¡£©
A¡¢2»ò-
3
2
B¡¢
3
2
C¡¢-2»ò
3
2
D¡¢-
2
7

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐÎå¸öÃüÌ⣺
£¨1£©y=sin4x-cos4xµÄ×îСÕýÖÜÆÚÊǦУ»
£¨2£©ÖÕ±ßÔÚyÖáÉϵĽǵļ¯ºÏÊÇ{x|x=
k¦Ð
2
£¬k¡ÊZ}£»
£¨3£©ÔÚÍ¬Ò»×ø±êϵÖУ¬y=sinxµÄͼÏóºÍy=xµÄͼÏóÓÐÈý¸ö¹«¹²µã£»
£¨4£©y=sin£¨x-
¦Ð
2
£©ÔÚ[0£¬¦Ð]ÉÏÊǼõº¯Êý£»
£¨5£©°Ñy=3sin£¨2x+
¦Ð
3
£©µÄͼÏóÏòÓÒÆ½ÒÆ
¦Ð
6
µÃµ½y=3sin2xµÄͼÏó£®
ÆäÖÐÕæÃüÌâµÄÐòºÅÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}ÖУ¬a1=1£¬an£¬an+1ÊÇ·½³Ìx2-£¨2n+1£©x+
1
bn
=0µÄÁ½¸ö¸ù£¬ÔòÊýÁÐ{bn}µÄǰ5ÏîºÍS5µÈÓÚ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª
1
m
+
2
n
=1
£¨m£¾0£¬n£¾0£©£¬Ôòµ±m+nÈ¡µÃ×îСֵʱ£¬ÍÖÔ²
x2
m
+
y2
n
=1
µÄ·½³ÌΪ£¨¡¡¡¡£©
A¡¢
x2
2
+
y2
4
=1
B¡¢
x2
2
-1
+
y2
2-
2
=1
C¡¢
x2
2
+1
+
y2
2
+2
=1
D¡¢
x2
2
+2
+
y2
2
+1
=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¡Ï¦ÁµÄÖձ߹ýµãP£¨-
5
£¬2£©£¬Çósin¦Á+tan¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôÖ±Ïßl£ºkx-y+2k-1=0ÓëÔ²C£ºx2+y2+4x=0½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£¬Ôò
AB
AC
µÄ·¶Î§ÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ò»Åúµç×èµÄ×èÖµ¦Î·þ´ÓÕý̬·Ö²¼N£¨1000£¬25£©£¨µ¥Î»£ºÅ·£©£¬½ñ´ÓÒ»Ïä³ö³§³ÉÆ·ÖÐËæ»ú³éȡһ¸öµç×裬²âµÃ×èֵΪ1100Å·£¬¿ÉÒÔÈÏΪÕâÏäµç×è
 
£¨Ìî¡°ºÏ¸ñ¡±»ò¡°²»ºÏ¸ñ¡±£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸