精英家教网 > 高中数学 > 题目详情
如图,AC是圆O的直径,点B在圆O上,∠BAC=30°,BM⊥AC交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(Ⅰ)证明:AB⊥BF;
(Ⅱ)求三棱锥E-BMF的体积.
考点:棱柱、棱锥、棱台的体积,空间中直线与直线之间的位置关系
专题:计算题,证明题
分析:(Ⅰ)证明AB⊥BF,转化成证明线面垂直,即证AB⊥平面BFC;
(Ⅱ)求三棱锥E-BMF的体积,转化成求三棱锥B-EMF的体积.
解答: 解:(Ⅰ)证明:∵EA⊥平面ABC,FC∥EA,
∴FC⊥平面ABC
∵AB?平面ABC
∴FC⊥AB
又∵AC是直径,B在圆上,
∴AB⊥BC
∴AB⊥平面BFC
又∵BF?平面BFC
∴AB⊥BF.
(Ⅱ)在△ABC中,∠BAC=30°,BM⊥AC交AC于点M,AC=4,
∴BM=
3

三角形EMF的面积S=
1
2
(3+1)×4-
1
2
×3×3-
1
2
×1×1
=3
VE-BMF=VB-EMF=
1
3
×3×
3
=
3
点评:本题考查了线面位置关系的证明及几何体的体积,证明线线垂直可以转化成证明线面垂直;求三棱锥的体积关键是通过转换顶点转化成易求底面积和高的三棱锥的体积问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三棱锥P-ABC中,已知PA=PB,∠ABC为直角,点D,E分别为PB,BC的中点.
(Ⅰ)求证:AD⊥平面PBC;
(Ⅱ)若F在线段AC上,且
AF
FC
=
1
2
,求证:AD∥平面PEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数f(x)=x+
p
x
(p>0为常数)在(0,+∞﹚上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

我校高2014级迎新晚会的舞台天花板上有前、后两排共4个灯架,每排2个,每个灯架上安装了5盏射灯,每盏射灯发光的概率为
1
2
.若一个灯架上至少有3盏射灯正常发光,则这个灯架不需要维修,否则需要维修.
(Ⅰ)求恰有两个灯架需要维修的概率;
(Ⅱ)若前排每个灯架的维修费用为100元,后排每个灯架的维修费用为200元,记ξ为维修灯架的总费用,求随机变量ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2且焦距为2
2
.点M为椭圆E上的一个动点,当MF2垂直于x轴时,恰好|MF1|:|MF2|=3:1.已知直线l与圆C:x2+y2=
4
3
相切,且与椭圆E相交于A、B两点,O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)探究
OA
OB
是否为定值,若是,求出
OA
OB
的值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x),x∈R,对任意x1、x2∈R,均有f(x1+x2)=f(x1)+f(x2),又x>0时,f(x)<0,f(1)=a,试判断函数f(x)在[-3,3]上是否有最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求多项式﹙x-1﹚-﹙x-1﹚2+﹙x-1﹚3-﹙x-1﹚4+﹙x-1﹚5的展开式中的x3的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:
x=2+3t
y=3-4t
(t为参数);椭圆C1
x=2cosθ
y=4sinθ
(θ为参数)
(Ⅰ)求直线l倾斜角的余弦值;
(Ⅱ)试判断直线l与椭圆C1的交点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
,(1+an+1)(1-an)=2,则a2014=
 

查看答案和解析>>

同步练习册答案