精英家教网 > 高中数学 > 题目详情
若不等式x2+kx+4<0在x∈(1,2)时恒成立,求k的取值范围.
考点:函数恒成立问题
专题:函数的性质及应用
分析:把给出的不等式移向,然后两边同时乘以
1
x
,然后由函数x+
4
x
的单调性求出-(x+
4
x
)的取值范围,则答案可求.
解答: 解:由x2+kx+4<0在x∈(1,2)时恒成立,得:
kx<-x2-4在x∈(1,2)时恒成立,
k<-x-
4
x
在x∈(1,2)时恒成立,
令t=-x-
4
x
=-(x+
4
x
),
当x∈(1,2)时,x+
4
x
为减函数,
∴t∈(-5,-4).
则k≤-5.
∴k的取值范围是(-∞,-5].
点评:本题考查函数恒成立问题,考查了分离变量法,训练了y=x+
k
x
(k>0)型函数的单调性,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(2
3
sin
x
2
,2),
n
=(cos
x
2
,cos2
x
2
),f(x)=
m
n

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+c)cosB+bcosC=0,若f(A)=
3
+1,求角C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(2m2-3m-2)+(m2-3m+2)i(其中i为虚数单位)
(1)当复数z是纯虚数时,求实数m的值;
(2)若复数z对应的点在第三象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sinx+2
3
cosx,(x∈R)
①求函数f(x)的最大值和最小值;
②求f(x)的单调递区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,有一块正方形区域ABCD,现在要划出一个直角三角形AEF区域进行绿化,满足:EF=1米,设角AEF=θ,θ∈[
π
6
π
3
],边界AE,AF,EF的费用为每米1万元,区域内的费用为每平方米4万元.
(1)求总费用y关于θ的函数.
(2)求最小的总费用和对应θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn},满足a1=2,2an=1+2anan+1,bn=an-1(bn≠0).
(Ⅰ)求证数列{
1
bn
}是等差数列,并求数列{an}的通项公式;
(Ⅱ)令Cn=bnbn+1,Sn为数列{Cn}的前n项和,求证:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4cosxsin(x+
π
6
)-1.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC的内角A、B、C所对的边分别为a、b、c,且f(C)=1,若c=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知曲线C1、C2、C3依次为y=2log2x、y=log2x、y=klog2x(k为常数,0<k<1).曲线C1上的点A在第一象限,过A分别作x轴、y轴的平行线交曲线C2分别于点B、D,过点B作y轴的平行线交曲线C3于点C.若四边形ABCD为矩形,则k的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是偶函数,f′(x)是它的导函数,当x>0时,f(x)+xf′(x)≤0恒成立,且f(-2)=0,则不等式xf(x)<0的解集为
 

查看答案和解析>>

同步练习册答案