精英家教网 > 高中数学 > 题目详情
20.设a,b∈R,且a≠2,定义在区间(-b,b)内的函数f(x)=lg$\frac{1+ax}{1+2x}$是奇函数.
(1)求a的值;
(2)求b的取值范围;
(3)用定义讨论并证明函数f(x)的单调性.

分析 (1)函数f(x)=lg$\frac{1+ax}{1+2x}$是奇函数等价于:对任意的x∈(-b,b),都有f(-x)=-f(x),即(a2-4)x2=0对任意x∈(-b,b)恒成立,解得a的值;
(2)解$\frac{1+2x}{1-2x}$>0得:x∈(-$\frac{1}{2}$,$\frac{1}{2}$).则有(-$\frac{1}{2}$,$\frac{1}{2}$)⊆(-b,b),解得b的取值范围;
(3)任取x1,x2∈(-b,b),令x1<x2,判断f(x1),f(x2)的大小,根据定义,可得答案.

解答 (本题满分12分)
解:(1)函数f(x)=lg$\frac{1+ax}{1+2x}$是奇函数等价于:
对任意的x∈(-b,b),都有f(-x)=-f(x),
即$\frac{1-ax}{1-2x}$=$\frac{1+2x}{1+ax}$,
即(a2-4)x2=0对任意x∈(-b,b)恒成立,
∴a2-4=0
又a≠2,
∴a=-2
(2)由(1)得:$\frac{1+2x}{1-2x}$>0对任意x∈(-b,b)恒成立,
解$\frac{1+2x}{1-2x}$>0得:x∈(-$\frac{1}{2}$,$\frac{1}{2}$).
则有(-$\frac{1}{2}$,$\frac{1}{2}$)⊆(-b,b),
解得:b∈(0,$\frac{1}{2}$]]
(3)任取x1,x2∈(-b,b),令x1<x2
则x1,x2∈(-$\frac{1}{2}$,$\frac{1}{2}$),
∴1-2x1>1-2x2>0,
1+2x2>1+2x1>0,
即(1+2x2)(1-2x1)>(1-2x2)(1+2x1)>0,
即$\frac{(1-2{x}_{1})(1+2{x}_{2})}{(1+2{x}_{1})(1-2{x}_{2})}$>1,
f(x1)-f(x2)=$lg\frac{1-2{x}_{1}}{1+2{x}_{1}}$-$lg\frac{1-2{x}_{2}}{1+2{x}_{2}}$=$lg\frac{(1-2{x}_{1})(1+2{x}_{2})}{(1+2{x}_{1})(1-2{x}_{2})}$>0,
则f(x1)>f(x2
∴f(x)在(-b,b)内是单调减函数.

点评 本题考查的知识点是函数的奇偶性,函数的单调性,恒成立问题,对数函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.数列{an}满足a1=1,对任意的n∈N*都有an+1=a1+an+n,则$\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{{{a_{2016}}}}$=$\frac{4032}{2017}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.不等式(x+5)(3-2x)≤6的解集是(  )
A.{x|x≤-1或x$≥\frac{9}{2}$}B.{x|-1≤x$≤\frac{9}{2}$}C.{x|x$≤-\frac{9}{2}$或x≥-1}D.{x|$-\frac{9}{2}≤$ x≤-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某林场今年造林10000亩,计划以后每一年比前一年多造林10%,那么从明年算起第3年内将造林13310亩.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{(a-1)x-\frac{1}{2}a,x≤1}\\{(a+1){x}^{2},x>1}\end{array}\right.$为R上的减函数,则实数a的取值范围是(  )
A.(-∞,-1)B.(-∞,-4)C.(-1,-4]D.(-∞,-4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知不等式ax2+bx+c>0的解集为{x|-$\frac{1}{3}$<x<2},则cx2+bx+a<0的解集为(-3,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.不等式$\frac{2+x}{2-x}$>0的解集为(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知一个圆经过直线l:2x+y+4=0与圆C:x2+y2+2x-4y=0的两个交点,并且有最小面积,则此圆的方程为x2+y2+$\frac{26}{5}$x-$\frac{12}{5}$y+$\frac{32}{5}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知复数z=$\frac{(2cosθ-1)i-1}{i}$,则“θ=$\frac{π}{3}$”是“z是纯虚数”的(  ) 条件.
A.充要B.必要不充分
C.充分不必要D.既不充分也不必要

查看答案和解析>>

同步练习册答案