精英家教网 > 高中数学 > 题目详情
8.在△ABC中,$\overrightarrow{BD}$=m$\overrightarrow{BC}$(0<m<1),AC=3,AD=$\sqrt{7}$,C=$\frac{π}{3}$.
(Ⅰ)求△ACD的面积;
(Ⅱ)若cosB=$\frac{\sqrt{15}}{4}$,求AB的长度以及∠BAC的正弦值.

分析 (Ⅰ)在△ADC中,利用余弦定理即可求得丨CD丨,则S=$\frac{1}{2}$×丨AC丨×丨CD丨,即可求得△ACD的面积;
(Ⅱ)由正弦定理即可求得丨AB丨,sin∠BAC=sin(B+C)利用两角和的正弦公式及同角三角函数的基本关系即可求得sin∠BAC.

解答 解:(Ⅰ)在△ADC中,由余弦定理可知:cosC=$\frac{丨{AC丨}^{2}+丨CD{丨}^{2}-丨AD{丨}^{2}}{2丨AC丨•丨CD丨}$=$\frac{{3}^{2}+丨CD{丨}^{2}-7}{2×3×丨CD丨}$=$\frac{1}{2}$,
整理得:丨CD丨2-3丨CD丨+2=0,解得:丨CD丨=1或丨CD丨=2,
当丨CD丨=1时,△ACD的面积S=$\frac{1}{2}$×丨AC丨×丨CD丨=$\frac{1}{2}$×3×1×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{4}$,
当丨CD丨=2时,△ACD的面积S=$\frac{1}{2}$×丨AC丨×丨CD丨=$\frac{1}{2}$×3×2×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{3}}{2}$,
∴△ACD的面积$\frac{3\sqrt{3}}{4}$或$\frac{3\sqrt{3}}{2}$;
(Ⅱ)由C=$\frac{π}{3}$,则sinC=$\frac{\sqrt{3}}{2}$,cosC=$\frac{1}{2}$,
cosB=$\frac{\sqrt{15}}{4}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{1}{4}$
由正弦定理可知:$\frac{丨AC丨}{sinB}$=$\frac{丨AB丨}{sinC}$,
则丨AB丨=$\frac{丨AC丨sinC}{sinB}$=6$\sqrt{3}$,
sin∠BAC=sin(B+C)=sinBcosC+cosBsinC=$\frac{1}{4}$×$\frac{1}{2}$+$\frac{\sqrt{15}}{4}$×$\frac{\sqrt{3}}{2}$=$\frac{3\sqrt{5}+1}{8}$,
∠BAC的正弦值$\frac{3\sqrt{5}+1}{8}$.

点评 本题考查正弦定理及余弦定理的应用,考查三角形的面积公式,两角和的正弦公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{2x+y≤1}\end{array}\right.$,记z=x+3y的最小值为k,则函数f(x)=ex+k-2的图象恒过定点(2,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某小区一号楼共有7层,每层只有1家住户,已知任意相邻两层楼的住户在同一天至多一家有快递,且任意相邻三层楼的住户在同一天至少一家有快递,则在同一天这7家住户有无快递的可能情况共有种12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数$f(x)=\left\{\begin{array}{l}{x^2},0<x≤1\\|{ln({x-1})}|,x>1\end{array}\right.$,若方程f(x)=kx-2有两个不相等的实数根,则实数k的取值范围是k≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数$f(x)=lg(\sqrt{1+4{x^2}}+2x)+2$,则$f(ln2)+f(ln\frac{1}{2})$=(  )
A.4B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知△AOB中,∠AOB=120°,|$\overrightarrow{OA}$|=3,|$\overrightarrow{OB}$|=2,过O作OD垂直AB于点D,点E为线段OD的中点,则$\overrightarrow{OE}$•$\overrightarrow{EA}$的值为(  )
A.$\frac{5}{19}$B.$\frac{27}{76}$C.$\frac{3}{76}$D.$\frac{3}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.利用反证法证明:“若x2+y2=0,则x=y=0”时,假设为(  )
A.x,y都不为0B.x≠y且x,y都不为0C.x≠y且x,y不都为0D.x,y不都为0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点分别为F1(-1,0),F2(1,0),上顶点为A,过A与AF2垂直的直线交x轴负半轴于Q点,且F1为QF2的中点.
(1)求椭圆C的标准方程;
(2)过F2的直线l与C交于不同的两点M、N,则△F1MN的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知自然数x满足3A${\;}_{x+1}^{3}$-2A${\;}_{x+2}^{2}$=6A${\;}_{x+1}^{2}$,则x(  )
A.3B.5C.4D.6

查看答案和解析>>

同步练习册答案