精英家教网 > 高中数学 > 题目详情
17.已知P为圆M:(x+2)2+y2=4上的动点,N(2,0),线段PN的垂直平分线与直线PM的交点为Q,点Q的轨迹方程为x2-$\frac{{y}^{2}}{3}$=1.

分析 由中垂线的性质可知|QN|=|PQ|,故而||QN|-|QM||=||PQ|-|QM||=|PM|=2,所以Q的轨迹为以M,N为焦点的双曲线.

解答 解:∵Q在PN的中垂线上,∴|QN|=|PQ|,∴||QN|-|QM||=||PQ|-|QM||=|PM|=2,
∴Q的轨迹为以M,N为焦点的双曲线.
设双曲线方程为$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$,则$\left\{\begin{array}{l}{c=2}\\{2a=2}\end{array}\right.$,又∵a2+b2=c2,∴a2=1,b2=3,
∴点Q的轨迹方程为x2-$\frac{{y}^{2}}{3}$=1.
故答案为x2-$\frac{{y}^{2}}{3}$=1.

点评 本题考查了双曲线的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在棱长为2的正方体ABCD-A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),满足|PB|+|PD1|=$2\sqrt{5}$的点P的个数为12;若满足|PB|+|PD1|=m的点P的个数为6,则m的取值范围是(2$\sqrt{3}$,2$\sqrt{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知点F1(-$\sqrt{13}$,0)和点F2($\sqrt{13}$,0)是椭圆E的两个焦点,且点A(0,6)在椭圆E上.
(1)求椭圆E的方程;
(2)设P是椭圆E上的一点,若|PF2|=4,求以线段PF1为直径的圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.以下四个命题:
①若函数y=ex-mx(x∈R)有大于零的极值点,则实数m>1;
②若抛物线x2=4y上一点M到焦点的距离为3,则点M到x轴的距离为2;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④已知函数f(x)=x3+ax2+bx-a2-7a在x=1处取得极大值10,则$\frac{a}{b}$的值为-2或-$\frac{2}{3}$.
其中真命题的序号为①②③(写出所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.运行如图的程序后,输出的结果为(  )
A.$\frac{53}{60}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的左,右焦点分别为F1(-1,0),F2(1,0),点P为椭圆上任意一点,且△PF1F2的内切圆面积的最大值为$\frac{1}{3}$π.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:y=kx+b(k>0,b>0)是圆O:x2+y2=3的一条切线,且l与椭圆C交于不同的两点A,B.若弦AB的长为$\frac{4\sqrt{6}}{7}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知二次函数f(x)=x2+2bx+c(b,c∈R).
(1)若函数y=f(x)的零点为-1和1,求实数b,c的值;
(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={1,2,3},则B={x-y|x∈A,y∈A}中的元素个数为(  )
A.9B.5C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(α=2b>0),直线l过点A(2a,0),B(0,2b),原点O到直线AB的距离为$\frac{4\sqrt{5}}{5}$.
(1)求椭圆的方程;
(2)是否存在过点P(0,2)的直线l与椭圆交于N,M两点,且使$\overrightarrow{QM}$=(λ+1)$\overrightarrow{QN}$-$λ\overrightarrow{QP}$成立(Q为直线l外的一点,λ>0)?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案