精英家教网 > 高中数学 > 题目详情
9.如图,在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{2\sqrt{2}}{3}$,经过椭圆的左顶点A(-3,0)作斜率为k(k≠0)的直线l交椭圆C于点D,交轴于点E
(1)求椭圆C的方程;
(2)已知点P为线段AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标,若不存在,说明理由.

分析 (1)由椭圆的离心率和左顶点,求出a,b,由此能求出椭圆C的标准方程.
(2)直线l的方程为y=k(x+3),与椭圆联立,利用韦达定理、直线垂直,结合题意能求出结果.

解答 解:(1)由题意,a=3,$\frac{c}{a}$=$\frac{2\sqrt{2}}{3}$,
∴c=2$\sqrt{2}$,b=1,
∴椭圆C的方程$\frac{{x}^{2}}{9}$+y2=1;
(2)设直线的方程为y=k(x+3),
代入椭圆方程,消元得(9k2+1)x2+54k2x+81k2-9=0,
∴x=-3或$\frac{3-27{k}^{2}}{9{k}^{2}+1}$…(6分)
∴D($\frac{3-27{k}^{2}}{9{k}^{2}+1}$,$\frac{6k}{9{k}^{2}+1}$),
又∵点P为AD的中点,∴P(-$\frac{27{k}^{2}}{9{k}^{2}+1}$,$\frac{3k}{9{k}^{2}+1}$),
则kOP=-$\frac{1}{9k}$(k≠0),…(9分)
直线l的方程为y=k(x+3),令x=0,得E(0,3k),
假设存在定点Q(m,n)(m≠0)使得OP⊥EQ,则kOP•kEQ=-1,
即-$\frac{1}{9k}$•$\frac{n-3k}{m}$=-1,
∴(9m-3)k+n=0恒成立
∴$\left\{\begin{array}{l}{9m-3=0}\\{n=0}\end{array}\right.$,即m=$\frac{1}{3}$,n=0,
因此定点Q的坐标为($\frac{1}{3}$,0)…(12分)

点评 本题考查椭圆方程的求法,考查满足条件的定点是否存在的判断与求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在△ABC中,若$\frac{{{{sin}^2}A+{{sin}^2}B}}{{{{sin}^2}C}}=1$,则△ABC的形状一定是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(a+1)x2-4(a+5)x,g(x)=5lnx+$\frac{1}{2}$ax2-x+5,其中a∈R.
(1)若函数f(x),g(x)有相同的极值点,求a的值;
(2)若存在两个整数m,n,使得函数f(x),g(x)在区间(m,n)上都是减函数,求n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.不等式-x2+2x+5<-2x的解集是(  )
A.{x|x≥5或x≤-1}B.{x|x>5或x<-1}C.{x|-1<x<5}D.{x|-1≤x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}是等差数列,其前n项和为Sn,若a3+a4+a5=9,则S7=(  )
A.21B.28C.35D.42

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设f(x)=$\left\{\begin{array}{l}{x,x∈(-∞,a)}\\{{x}^{2},x∈[a,+∞)}\end{array}\right.$,若f(2)=4,则a的取值范围为a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知正项数列{an}中,a1=1,na${\;}_{n+1}^{2}$-anan+1=(n+1)a${\;}_{n}^{2}$,则an=(  )
A.nB.2nC.n+2D.2n+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知tanα=$\frac{1}{2}$,求tan2α,cot2α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左,右焦点分别为F1、F2,$\overrightarrow{A{F}_{2}}$=λ$\overrightarrow{{F}_{2}B}$(λ>0),其中A、B为双曲线右支上的两点.若在△AF1B中,∠F1AB=90°,|F1B|=$\sqrt{2}$|AB|,则双曲线C的离心率的平方的值为(  )
A.5+2$\sqrt{2}$B.5-2$\sqrt{2}$C.6-$\sqrt{2}$D.6+$\sqrt{2}$

查看答案和解析>>

同步练习册答案