精英家教网 > 高中数学 > 题目详情
17.不等式-x2+2x+5<-2x的解集是(  )
A.{x|x≥5或x≤-1}B.{x|x>5或x<-1}C.{x|-1<x<5}D.{x|-1≤x≤5}

分析 把不等式化为(x+1)(x-5)>0,求出对应方程的实数解,写出该不等式的解集即可.

解答 解:不等式-x2+2x+5<-2x等价于x2-4x-5>0,
即为(x+1)(x-5)>0,解得x<-1或x>5,
故选:B.

点评 本题考查了一元二次不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.以下四个命题中:
①在回归分析中,可用相关指数R2的值判断模型的拟合效果,R2越大,模拟的拟合效果越好;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;
③对分类变量x与y的随机变量k2的观测值k来说,k越小,判断“x与y无关系”的把握程度越大;
④对分类变量x与y的随机变量k2的观测值k来说,k越小,判断“x与y有关系”的把握程度越大.
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在锐角△ABC中,已知∠A,∠B,∠C成等差数列,设y=sinA-cos(A-C+2B),则y的取值范围是(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.2016年04月13日“山东济南非法经营疫苗系列案件”披露后,引发社会高度关注,引起公众、受种者和儿童家长对涉案疫苗安全性和有效性的担忧.为采取后续处置措施提供依据,保障受种者的健康,尽快恢复公众接种疫苗的信心,科学严谨地分析涉案疫苗接种给受种者带来的安全性风险和是否有效,对某疫苗预防疾病的效果,进行动物实验,得到统计数据如表,现从所有试验动物中任取一只,取到“注射疫苗”动物的概率为$\frac{2}{5}$.
(1)求2×2列联表中的数据x,y,A,B的值;
未发病发病合计
未注射疫苗20xA
注射疫苗30yB
合计5050100
(2)绘制发病率的条形统计图,并判断疫苗是否有效?
(3)能够有多大把握认为疫苗有效?
附:${{K}^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P( K2≤K00.050.010.0050.001
K03.8416.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.方程($\frac{1}{3}$)x=|x2-4x+3|的解的个数为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,为了测量A、B两点间的距离,在地面上选择适当的点C,测得AC=100m,BC=120m,∠ACB=60°,那么A、B的距离为(  )
A.20$\sqrt{91}$ mB.20$\sqrt{31}$ mC.500 mD.60$\sqrt{66}$ m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{2\sqrt{2}}{3}$,经过椭圆的左顶点A(-3,0)作斜率为k(k≠0)的直线l交椭圆C于点D,交轴于点E
(1)求椭圆C的方程;
(2)已知点P为线段AD的中点,是否存在定点Q,对于任意的k(k≠0)都有OP⊥EQ,若存在,求出点Q的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.(文)二次函数y=x2+bx的图象如图,对称轴为x=1.若关于x的二次方程x2+bx-t=0(为实数)在-1<x<4的范围内有解,则t的取值范围是(  )
A.-1≤t<3B.t≥-1C.3<t<8D.-1≤t<8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=$\sqrt{x+1}$+lg(x-2)的定义域是(  )
A.[-1,+∞)B.(-∞,2)C.[1,2)D.(2,+∞)

查看答案和解析>>

同步练习册答案