精英家教网 > 高中数学 > 题目详情
20.已知两矩形ABCD与ADEF所在的平面互相垂直,AB=1,若将△DEF沿直线FD翻折,使得点E落在边BC上(即点P),则当AD取最小值时,边AF的长是$\sqrt{2}$;此时四面体F-ADP的外接球的半径是$\frac{\sqrt{6}}{2}$.

分析 由已知中矩形ABCD与矩形ADEF所在的平面互相垂直,将△DEF沿FD翻折,翻折后的点E恰与BC上的点P重合.设AB=1,FA=x(x>1),AD=y,我们利用勾股定理分别求出BP,PC,根据BC=BP+PC,可以得到 x,y的关系式,利用换元法结合二次函数的性质,可得答案.四面体F-ADP的外接球的球心为DF的中点,即可求出四面体F-ADP的外接球的半径.

解答 解:设FA=x(x>1),AD=y,
∵矩形ABCD与矩形ADEF所在的平面互相垂直,AB=1,FA=x(x>1),AD=y,
∴FE=FP=AD=BC=y,AB=DC=1,FA=DE=DP=x
在Rt△DCP中,PC=$\sqrt{{x}^{2}-1}$
在Rt△FAP中,AP=$\sqrt{{y}^{2}-{x}^{2}}$
在Rt△ABP中,BP=$\sqrt{{y}^{2}-{x}^{2}-1}$
∵BC=BP+PC=$\sqrt{{y}^{2}-{x}^{2}-1}$+$\sqrt{{x}^{2}-1}$=y
整理得y2=$\frac{{x}^{4}}{{x}^{2}-1}$,令x2=$\frac{1}{t}$
则y2=$\frac{1}{-{t}^{2}+t}$,
则当t=$\frac{1}{2}$,即x=$\sqrt{2}$时,y取最小值2.
四面体F-ADP的外接球的球心为DF的中点,DF=$\sqrt{2+4}$=$\sqrt{6}$,四面体F-ADP的外接球的半径是$\frac{\sqrt{6}}{2}$.
故答案为:$\sqrt{2}$,$\frac{\sqrt{6}}{2}$.

点评 本题考查的知识点是空间两点之间的距离计算,由于本题是几何与代数知识的综合应用,运算量比较大,而且得到的x,y的关系比较复杂,因此要用换元法,简单表达式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若球的表面积为8π,则球的体积是$\frac{8\sqrt{2}}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若二项式(3x-$\frac{1}{\root{3}{x}}$)n的展开式中各项系数之和为256.
(1)求展开式中二项式系数最大的项;
(2)求展开式中的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.(x2-x+ay)7的展开式中,x7y2的系数为-$\frac{105}{2}$,则a等于(  )
A.-2B.$\frac{1}{2}$C.±2D.±$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在平面直角坐标系中,过(1,0)点且倾率为-1的直线不经过(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若集合A={x|y=lgx},B={x|y=$\sqrt{1-x}$},则A∩B等于(  )
A.[0,1]B.(0,1]C.[1,+∞)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.青岛发生输油管道爆炸事故造成胶州湾局部污染,国家海洋局用分层抽样的方法从国家环保专家、海洋生物专家、油气专家三类专家库中抽取若干组成研究小组赴泄油海域工作,有关数据见表一(单位:人)
表一:
  相关人员数抽取人数
 环保专家 24 x
 海洋生物专家 48 4
 油气专家 36 y
表二:
  重度污染 轻度污染 合计
 身体健康 30 A 50
 身体不健康 B 10 60
 合计 C D E
海洋生物专家为了检测该地污染后对海洋生物身体健康的影响,随机选取了110只海豚进行了检测,并将有关数据整理为不完整的2×2的列联表,如表二.
(1)求研究小组的人数;
(2)写出表二中A,B,C,D,E的值,并做出判断能否有99%的把握认为“海豚身体健康与受到污染有关”;(3)若从环保小组的环保专家和油气专家随机选2人撰写研究报告,求其中恰好有1人为环保专家的概率.
解答时可参考下面公式及临界值表:k0=$\frac{n(ad-bc)^{2}}{(a+b)(b+d)(a+b)(c+b)}$.
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005
 k0 2.706 3.841 5.024 0.635 7.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a,b,c分别是△ABC的内角A,B,C的对边,且c=2,C=$\frac{π}{3}$.
(Ⅰ)若△ABC的面积等于$\sqrt{3}$,求a,b;
(Ⅱ)若sinC+sin(B-A)=2sin2A,求锐角A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A(1,0),点P是圆C:(x+1)2+y2=8上的任意一点,线段PA的垂直平分线与直线CP交于点E.
(1)求点E的轨迹方程;
(2)若直线l与点E的轨迹有两个不同的交点M和N,问点E的轨迹的右焦点F是否可以为△BMN的垂心?其中B为上顶点.若可以,求出直线l的方程;若不可以,请说明理由.

查看答案和解析>>

同步练习册答案