精英家教网 > 高中数学 > 题目详情
10.已知点A(1,0),点P是圆C:(x+1)2+y2=8上的任意一点,线段PA的垂直平分线与直线CP交于点E.
(1)求点E的轨迹方程;
(2)若直线l与点E的轨迹有两个不同的交点M和N,问点E的轨迹的右焦点F是否可以为△BMN的垂心?其中B为上顶点.若可以,求出直线l的方程;若不可以,请说明理由.

分析 (1)由题意画出图形,然后利用椭圆定义可得点E的轨迹为焦点在x轴上,2a=$2\sqrt{2}$,2c=2的椭圆,结合隐含条件求出b后可得椭圆方程;
(2)假设右焦点F为△BMN的垂心,由F(1,0),可得直线BF的斜率为-1,从而直线l的斜率为1,设其方程为y=x+m.联立直线方程和椭圆方程,化为关于x的一元二次方程,求出M,N的横坐标的和与积,再由$\overrightarrow{NF}•\overrightarrow{MB}=0$求得k值得答案.

解答 解:(1)如图,由题意可得|EC|+|EA|=|EC|+|EP|=$2\sqrt{2}$>|AC|=2,
则由椭圆的定义可知点E的轨迹为焦点在x轴上,2a=$2\sqrt{2}$,2c=2的椭圆,
∴$a=\sqrt{2},c=1,b=1$,
则椭圆E的轨迹方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(2)假设右焦点F为△BMN的垂心,
∵F(1,0),∴直线BF的斜率为-1,从而直线l的斜率为1,设其方程为y=x+m.
联立$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,得3x2+4mx+2m2-2=0.
由△=16m2-24(m2-1)=24-8m2>0,得m2<3.
设M(x1,y1),N(x2,y2),则${x}_{1}+{x}_{2}=-\frac{4}{3}m,{x}_{1}{x}_{2}=\frac{2{m}^{2}-2}{3}$.
于是$\overrightarrow{NF}•\overrightarrow{BM}=(1-{x}_{2}){x}_{1}-{y}_{2}({y}_{1}-1)$=x1+y2-x1x2-y1y2=x1+x2+m-x1x2-(x1+m)(x2+m)
=$-2{x}_{1}{x}_{2}+(1-m)({x}_{1}+{x}_{2})+m-{m}^{2}$=$-2•\frac{2{m}^{2}-2}{3}+(1-m)•(-\frac{4m}{3})+m-{m}^{2}$=$-{m}^{2}-\frac{1}{3}m+\frac{4}{3}=0$,
解得m=1或m=$-\frac{4}{3}$.
当m=1时,点B即为直线l与椭圆的交点,不合题意;
当m=-$\frac{4}{3}$时,经检验直线l和椭圆相交,符合题意.
∴当且仅当直线l的方程为y=x-$\frac{4}{3}$时,点F是△BMN的垂心.

点评 本题考查利用椭圆的定义求椭圆的方程,考查了直线与圆锥曲线位置关系的应用,训练了利用向量数量积判断两直线的垂直关系,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知两矩形ABCD与ADEF所在的平面互相垂直,AB=1,若将△DEF沿直线FD翻折,使得点E落在边BC上(即点P),则当AD取最小值时,边AF的长是$\sqrt{2}$;此时四面体F-ADP的外接球的半径是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.半径为100mm的圆上,有一段弧长为300mm,此弧所对的圆心角的弧度数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某机构邀请5位市民体验“刷卡支付”、“微信支付”、“支付宝支付”,每人限使用一种支付方式,每种支付方式都要有人选择,则不同的支付方式种数有(  )
A.540B.240C.180D.150

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.f(x)是定义在非零实数集上的函数,f′(x)为其导函数,且x>0时,xf′(x)-f(x)<0,记a=$\frac{f({2}^{0.2})}{{2}^{0.2}}$,b=$\frac{f(0.{2}^{2})}{0.{2}^{2}}$,c=$\frac{f(lo{g}_{2}5)}{lo{g}_{2}5}$,则a,b,c的大小关系为c<a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某几何体的三视图如图所示,其中正视图是腰长为2cm的等腰三角形,俯视图是半径为1cm的半圆,则该几何体的表面积是$\frac{3π}{2}$+$\sqrt{3}$cm2,体积是$\frac{\sqrt{3}}{6}$πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)+g(x)=x3-x2+1,则f(1)-g(1)=(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1,F2为椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点,以原点O为圆心,半焦距为半径的圆与椭圆相交于四个点,设位于y轴右侧的两个交点为A,B,若△ABF1为等边三角形,则椭圆的离心率为(  )
A.$\sqrt{2}$-1B.$\sqrt{3}$-1C.$\frac{{\sqrt{2}-1}}{2}$D.$\frac{{\sqrt{3}-1}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若[x]表示不超过实数x的最大整数,函数f(x)=x-[x],x∈R,则下列四个关于函数f(x)的命题:
①f(x)的值域为[0,1);
②f(x)为R上的增函数;
③f(x)为奇函数;
④f(x)为周期函数.
其中真命题的序号为(  )
A.①④B.①③C.②③D.③④

查看答案和解析>>

同步练习册答案