精英家教网 > 高中数学 > 题目详情
1.半径为100mm的圆上,有一段弧长为300mm,此弧所对的圆心角的弧度数为3.

分析 由已知利用弧长公式即可计算得解.

解答 解:半径为100mm的圆上,有一段弧长为300mm,
则由弧长公式可得:α=$\frac{l}{r}$=$\frac{300}{100}$=3,
故答案为:3.

点评 本题考查了弧长公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.若二项式(3x-$\frac{1}{\root{3}{x}}$)n的展开式中各项系数之和为256.
(1)求展开式中二项式系数最大的项;
(2)求展开式中的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.青岛发生输油管道爆炸事故造成胶州湾局部污染,国家海洋局用分层抽样的方法从国家环保专家、海洋生物专家、油气专家三类专家库中抽取若干组成研究小组赴泄油海域工作,有关数据见表一(单位:人)
表一:
  相关人员数抽取人数
 环保专家 24 x
 海洋生物专家 48 4
 油气专家 36 y
表二:
  重度污染 轻度污染 合计
 身体健康 30 A 50
 身体不健康 B 10 60
 合计 C D E
海洋生物专家为了检测该地污染后对海洋生物身体健康的影响,随机选取了110只海豚进行了检测,并将有关数据整理为不完整的2×2的列联表,如表二.
(1)求研究小组的人数;
(2)写出表二中A,B,C,D,E的值,并做出判断能否有99%的把握认为“海豚身体健康与受到污染有关”;(3)若从环保小组的环保专家和油气专家随机选2人撰写研究报告,求其中恰好有1人为环保专家的概率.
解答时可参考下面公式及临界值表:k0=$\frac{n(ad-bc)^{2}}{(a+b)(b+d)(a+b)(c+b)}$.
 P(K2≥k0 0.10 0.05 0.025 0.010 0.005
 k0 2.706 3.841 5.024 0.635 7.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知a,b,c分别是△ABC的内角A,B,C的对边,且c=2,C=$\frac{π}{3}$.
(Ⅰ)若△ABC的面积等于$\sqrt{3}$,求a,b;
(Ⅱ)若sinC+sin(B-A)=2sin2A,求锐角A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.四棱锥S-ABCD的底面是边长为2的正方形,顶点S在底面的射影是底面正方形的中心O,SO=2,E是边BC的中点,动点P在表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为$\sqrt{2}+\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.椭圆的四个顶点A,B,C,D构成四边形为菱形,若菱形ABCD的内切圆恰好过焦点,则椭圆离心率为(  )
A.$\frac{3\sqrt{5}}{2}$B.$\frac{3+\sqrt{5}}{8}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{5}+1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.与直线2x+y+1=0垂直,且交点在y轴上的直线方程为x-2y-2=0(要求写一般式).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A(1,0),点P是圆C:(x+1)2+y2=8上的任意一点,线段PA的垂直平分线与直线CP交于点E.
(1)求点E的轨迹方程;
(2)若直线l与点E的轨迹有两个不同的交点M和N,问点E的轨迹的右焦点F是否可以为△BMN的垂心?其中B为上顶点.若可以,求出直线l的方程;若不可以,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足:a1=1,a2=2,且an+2=(2+cosnπ)(an-1)+3,n∈N*
(1)求数列{an}前20项的和S20
(2)求通项公式an
(3)设{an}的前n项和为Sn,问:是否存在正整数m、n,使得S2n=mS2n-1?若存在,请求出所有符合条件的正整数对(m,n),若不存在,请说明理由.

查看答案和解析>>

同步练习册答案